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Moore’s Law

I Gordon Moore, co-founder of Intel

I integrated circuits invented in 1958

I Moore made prediction in a 1965 paper

I the density of transistors in CPUs doubles every
1 or 2 years

I as number of transistors increases
I CPUs become more complex
I can do more in one clock cycle
I more instructions
I instruction-level parallelism: pipelining, . . .

I as distance between transistors decreases
I the time for current to travel between them decreases
I clock frequency can be increased
I computing capability increases
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curve shows transistor
count doubling every
two years
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Source: https://commons.wikimedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg

S.F. Siegel � CISC 372: Parallel Computing � Fall 2020 � Introduction 3

https://commons.wikimedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg


Units of measurement

I CPU frequency is measured in Hertz (Hz)
I number of cycles per second

I cycle: smallest unit of time in which state of processor can change

I equivalent to 1/s (s = second)
I typical speed of modern CPU: 2.5 GHz = 2.5 × 109 Hz

I power consumption is measured in Watts (W)
I power is energy per unit time
I one Watt = 1 Joule per second (1 J/s)

I example: a 30 W processor running for one hour consumes
(30 J/s)(3600 s) = 108, 000 J

I 1 kilowatt hour (kWh) is also a unit of energy:
I total amount of energy consumed by consuming 1000 Watts for one hour
I (1000 W)(3600 s) = (1000 J/s)(3600 s) = 3, 600, 000 J

I one Watt = one Volt times one Ampere
I rate at which work is done when one Ampere of current flows through

an electrical potential difference of 1 Volt
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Microprocessor trends through 2020
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48 Years of Microprocessor Trend Data

I Moore’s law still holding!

I frequency peaked around 2005 (∼ 3GHz) . . . multiple cores took off

I single-thread performance barely increasing now
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Problems arose around 2005

I harder to find ways to speed things up with more transistors
I increasing frequency requires much more power

I relationship between power and CPU frequency is complicated
I power consumption is roughly proportional to cube of frequency

I energy is a valuable resource! (climate change, . . . )
I energy consumed by processor is converted into heat

I the heat must be removed in some way (liquid nitrogen cooling?!)
I when transistors are so small and packed so closely together, they can

be easily damaged by heat

I solution: instead of trying to make processors faster, put more
processors on the integrated circuit (“chip”)

I these “multi-core” chips have multiple processors (cores) on one chip
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Example: one fast core vs. two slower cores

I CPU1 has one core
I clock speed: x (measured in Hz)
I power consumption: y (measured in W)

I CPU2 has two of the same cores running 30% slower
I clock speed: (.7)x
I power consumption: 2(.7)3y = .686y

I comparison
I CPU2 uses less than 70% of the power of CPU1
I CPU2 has 2(.7) = 1.4 times the compute capability of CPU1
I CPU2 is a win-win!
I but this assumes programs can utilize the two cores concurrently!

I and with 0 overhead

reference: https://www.comsol.com/blogs/havent-cpu-clock-speeds-increased-last-years

S.F. Siegel � CISC 372: Parallel Computing � Fall 2020 � Introduction 7

https://www.comsol.com/blogs/havent-cpu-clock-speeds-increased-last-years


Intel Core i7 Nehalem CPU
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Multi-core memory organization: UMA

Core 1 Core 2 Core 3 Core 4

interconnect

memory

UMA: Uniform Memory Access

I all cores can access any memory location

I access time is independent of memory location
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Multi-core memory organization: NUMA

Core 1 Core 2

interconnect

memory bank

Core 3 Core 4

interconnect

memory bank

slow

NUMA: Non-Uniform Memory Access

I all cores can access any memory location

I memory divided into banks; each core has an affinity to one bank

I core can access affiliated bank faster than another bank
I locality is vital for good performance

I want most memory accesses to be to affiliated bank
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12-core AMD Magny-cours CPU “package”
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Structure of multi-socket AMD Magny-cours system

I system can have 2 or 4 sockets on a card

I each socket contains a CPU “package” consisting of 2 dies

I each die comprises 6 cores

I each die has L3 cache, memory interface, and affiliated memory bank
(NUMA!)

S.F. Siegel � CISC 372: Parallel Computing � Fall 2020 � Introduction 12



Distributed systems and Clusters

I parallel computing has been around a long time . . . long before
multi-cores

I a cluster is a set of computers connected by a network to form a single
computing system

Cubbiboard network
https://en.wikipedia.org/wiki/Computer_cluster#/media/File:Cubieboard_HADOOP_cluster.JPG
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Clusters

I origins in the mid-1960s

I exploded in the 1980s and 1990s in high-performance computing
I enabled building of supercomputers from commodity hardware

I commodity=inexpensive because components are mass-produced
I examples: cheap PCs; mass-produced Intel or AMD CPUs

I extremely scalable: up to hundreds of thousands of nodes

I networking technologies: Ethernet, Infiniband, . . .

Mills Cluster, UD
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Multi-cores vs. clusters

Multi-cores:

I processors on same chip can share resources such as cache on chip

I communication and coordination on chip extremely fast and
power-efficient

I limited scalability (no 100,000-core chip yet)

Clusters:

I no shared cache

I all communication must go over network; slower and less
power-efficient than within a chip

I virtually no limit to scalability

Today all modern supercomputers combine features of both

I clusters of multi-core nodes

I see https://www.top500.org/lists/2018/06/
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Programming models

1. message-passing
I each node runs its own program or “process”
I there are no variables shared by processes
I processes communicate by calls to message-passing functions

I process 1: “send the data in array a to process 17”
I process 17: “receive data from process 1 and store in array b”

2. shared variables
I one program spawns multiple “threads”
I threads communicate by writing to and reading from shared variables

I thread 1 : x := (t1+t2)/2;
I thread 17: t3 := x;
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Message-passing vs. shared variables

If you want to “parallelize” a sequential program. . .
I using message-passing:

1. data structures (e.g., arrays) must be distributed across the processes
I need to translate between the local index and original global index

2. new communication commands/functions needed: send, receive, . . .
3. local variables of one process can never be changed by another

I you can safely reason about one process much like a sequential program

4. locality is easily expressed — helping achieve good performance

I using shared variables:
1. data structures mostly unchanged

I “global view of data” : same as in original program

2. communication accomplished by plain old assignment statements
3. local variables of one thread might be changed at any time by another

thread
I local reasoning difficult; careful coordination/synchronization needed

4. locality can be difficult to specify — achieveing good performance can
be difficult
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Message-passing vs. shared variables

Implementation:
I implementing message-passing systems is relatively easy

I no need to modify the compiler or operating system
I can be implemented as a C library (MPI)
I many robust (and free) implementations exist — for many years

I implementing shared-variable systems is hard
I new programming languages : research
I libraries (Pthreads) : requires OS support
I pragma/annotation systems (OpenMP): compiler and OS support

You might think:

I message-passing is the best model for clusters

I shared variables is the best model for multi-cores

but it’s not that simple.
I message-passing models can be used to program multi-cores

I MPI, MCAPI. (actually very effective)

I shared variable models can be used to program clusters
I Chapel, UPC. (this is more experimental)
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Some applications of scientific computing

I Blue Brain Project (IBM/EPFL)
I brain model based on biologically realistic model of neuron
I 2005: model of single neuron
I 2008: simulation of neocortical column (10,000 neurons)
I 2011: simulation of mesocircuit (100 neocortical columns)
I 2015: simulation of part of rat’s primary somatosensory cortex

I 31,000 cells; 37 million synapses
I findings: evidence for “innate knowledge”

I http://actu.epfl.ch/news/new-evidence-for-innate-knowledge-5/

I goal: simulation of full human brain
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Some applications of scientific computing

I Molecular Dynamics
I 2006: complete atomic simulation of satellite tobacco mosaic virus
I around 1 million atoms
I software: NAMD
I time resolution: femto-second (one millionth of one billionth sec.)
I duration: 50 billionths sec.
I findings

I virus pulses asymmetrically
I collapses without genetic material (implications on reproduction)
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Some applications of scientific computing
I climate modeling and weather

prediction

I drug discovery

I atomic structure

I development of new batteries

I design and simulation of nuclear
reactors

I design of buildings, automobiles,
aircraft, ships

I simulation of astronomical
phenomena
I supernovae
I galaxy formation and collision
I the Big Bang

I geological modeling
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Applications: COVID-19 Research

I molecular simulations to screen 8,000 compounds
I IBM’s Summit supercomputer
I find which bind to the coronavirus “spike” protein
I 77 recommended for testing

I Simulation of urban transportation systems for return to operations

I Integrative modeling of SARS-COV2 envelope structure

I COVID Mapping and Modeling for City of Philadelphia
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How this class will work

Before each class, you should. . .

I watch the video(s)

I read the notes if you want

I take the quiz

In class we will. . .

I review the quiz and selected homework solutions

I answer questions, work out any issues, . . .
I work on breakout problems in small groups

I you commit your solutions to your personal repo for participation credit

I present your solutions to breakout problems

I amuse bouche: preview of next subject/video
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Homework

I homework is assigned each Tuesday

I due Wednesday morning (9:30 AM) of the next week

I late (5% penalty): between 9:30 AM and 9:30 PM Wednesday

I late (15% penalty): between 9:30 PM Wednesday and 9:30 AM
Thursday

I solutions are released 9:30 AM Thursday
I no solutions can be accepted after this time (0 points)

I it is always better to submit something rather than nothing

I it is always better to submit a program that compiles and gets some
answers right, than a program that doesn’t compile
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Grading

I two exams, during class time: Oct 8, Nov 19

I no final exam

I final project (groups of 2)

Quizzes 5%
Participation 5%
Homework 40%
Exam 1 15%
Exam 2 15%
Final Project 20%
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Resources available to you

I free online textbooks

I many example programs from other authors, sources

I free online tutorials

I office hours (10 hours per week between me and 2 TAs)

I Slack: ask and answer questions, discuss issues

See the syllabus for a complete list.
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Mechanics

Two Subversion repositories:

1. public repo
I svn://grendel.cis.udel.edu/372-2020F
I how we distribute material to you
I homework assignments, code examples, notes, documents

2. your personal repo
I svn://grendel.cis.udel.edu/372-USER
I how you submit material to us
I homework solutions and breakout solutions

Canvas is used for gradebook and videos.
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What you have to do next

I read the syllabus!

I get your EECIS account

I watch the two Unix videos and take the Unix quiz before class
Thursday

I start working on HW1, due next week

I optional: submit an intro video of yourself (Canvas Assignment)
I take the Intro quiz (on today’s lecture)

I some time before end of next week
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