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How you can play along with today’s lecture

Hopefully one of the following will work for you. . .

I if you have a Mac, open up a Terminal window

I if you have a Linux VM, start it up, open up a Terminal window

I Windows users: install WSL2,
https://docs.microsoft.com/en-us/windows/wsl/install-win10

I ssh grendel.cis.udel.edu (you must first be on UD VPN)

S.F. Siegel � CISC 372: Parallel Computing � Fall 2020 � Unix 2

https://docs.microsoft.com/en-us/windows/wsl/install-win10


UNIX Historical Overview

I AT&T, circa 1970

I started as a reaction to Multics
I revolutionary OS under development at MIT, AT&T, GE
I Multics thought to be too complicated but having good ideas
I Multics = Multiplexed Information and Computing Service
I Unics = UNiplexed Information and Computing Service

I Ken Thompson, Dennis Ritchie, M. D. McIlroy, J. F. Ossanna, . . .
I C language invented in order to develop Unix in a portable way

I previously used assembly language

I extremely influential and popular, leading to many variants
I BSD Unix (Berkeley Standard Distribution)

I Free-BSD, OpenBSD, DragonFly BSD · · · → Darwin (OS X)
I Solaris (Sun → Oracle)

I GNU/Linux
I AIX
I Xenix
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Ken Thompson and Dennis Ritchie
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Unix: Main ideas

I multitasking, multi-user

I set of relatively independent tools built around a single small kernel

I modularity, re-usable software components
I everything is a file

I the filesystem is the main means of communication
I printer, terminal, drives, . . . are all files
I most commands are files: files can be made executable and thus become commands

I shell scripting + command language to combine different tools

I hierarchical file system with no limit on hierarchy
I command interpreter is just another program (shell)

I makes it very easy to create new commands and thereby extend the language

I all files: newline-delimited ASCII

I use of regular expressions

I self-documenting (man)

S.F. Siegel � CISC 372: Parallel Computing � Fall 2020 � Unix 5



Unix: Main ideas

I multitasking, multi-user

I set of relatively independent tools built around a single small kernel

I modularity, re-usable software components
I everything is a file

I the filesystem is the main means of communication
I printer, terminal, drives, . . . are all files
I most commands are files: files can be made executable and thus become commands

I shell scripting + command language to combine different tools

I hierarchical file system with no limit on hierarchy
I command interpreter is just another program (shell)

I makes it very easy to create new commands and thereby extend the language

I all files: newline-delimited ASCII

I use of regular expressions

I self-documenting (man)

S.F. Siegel � CISC 372: Parallel Computing � Fall 2020 � Unix 5



Unix: Main ideas

I multitasking, multi-user

I set of relatively independent tools built around a single small kernel

I modularity, re-usable software components

I everything is a file
I the filesystem is the main means of communication
I printer, terminal, drives, . . . are all files
I most commands are files: files can be made executable and thus become commands

I shell scripting + command language to combine different tools

I hierarchical file system with no limit on hierarchy
I command interpreter is just another program (shell)

I makes it very easy to create new commands and thereby extend the language

I all files: newline-delimited ASCII

I use of regular expressions

I self-documenting (man)

S.F. Siegel � CISC 372: Parallel Computing � Fall 2020 � Unix 5



Unix: Main ideas

I multitasking, multi-user

I set of relatively independent tools built around a single small kernel

I modularity, re-usable software components
I everything is a file

I the filesystem is the main means of communication
I printer, terminal, drives, . . . are all files
I most commands are files: files can be made executable and thus become commands

I shell scripting + command language to combine different tools

I hierarchical file system with no limit on hierarchy
I command interpreter is just another program (shell)

I makes it very easy to create new commands and thereby extend the language

I all files: newline-delimited ASCII

I use of regular expressions

I self-documenting (man)

S.F. Siegel � CISC 372: Parallel Computing � Fall 2020 � Unix 5



Unix: Main ideas

I multitasking, multi-user

I set of relatively independent tools built around a single small kernel

I modularity, re-usable software components
I everything is a file

I the filesystem is the main means of communication
I printer, terminal, drives, . . . are all files
I most commands are files: files can be made executable and thus become commands

I shell scripting + command language to combine different tools

I hierarchical file system with no limit on hierarchy
I command interpreter is just another program (shell)

I makes it very easy to create new commands and thereby extend the language

I all files: newline-delimited ASCII

I use of regular expressions

I self-documenting (man)

S.F. Siegel � CISC 372: Parallel Computing � Fall 2020 � Unix 5



Unix: Main ideas

I multitasking, multi-user

I set of relatively independent tools built around a single small kernel

I modularity, re-usable software components
I everything is a file

I the filesystem is the main means of communication
I printer, terminal, drives, . . . are all files
I most commands are files: files can be made executable and thus become commands

I shell scripting + command language to combine different tools

I hierarchical file system with no limit on hierarchy

I command interpreter is just another program (shell)
I makes it very easy to create new commands and thereby extend the language

I all files: newline-delimited ASCII

I use of regular expressions

I self-documenting (man)

S.F. Siegel � CISC 372: Parallel Computing � Fall 2020 � Unix 5



Unix: Main ideas

I multitasking, multi-user

I set of relatively independent tools built around a single small kernel

I modularity, re-usable software components
I everything is a file

I the filesystem is the main means of communication
I printer, terminal, drives, . . . are all files
I most commands are files: files can be made executable and thus become commands

I shell scripting + command language to combine different tools

I hierarchical file system with no limit on hierarchy
I command interpreter is just another program (shell)

I makes it very easy to create new commands and thereby extend the language

I all files: newline-delimited ASCII

I use of regular expressions

I self-documenting (man)

S.F. Siegel � CISC 372: Parallel Computing � Fall 2020 � Unix 5



Unix: Main ideas

I multitasking, multi-user

I set of relatively independent tools built around a single small kernel

I modularity, re-usable software components
I everything is a file

I the filesystem is the main means of communication
I printer, terminal, drives, . . . are all files
I most commands are files: files can be made executable and thus become commands

I shell scripting + command language to combine different tools

I hierarchical file system with no limit on hierarchy
I command interpreter is just another program (shell)

I makes it very easy to create new commands and thereby extend the language

I all files: newline-delimited ASCII

I use of regular expressions

I self-documenting (man)

S.F. Siegel � CISC 372: Parallel Computing � Fall 2020 � Unix 5



Unix: Main ideas

I multitasking, multi-user

I set of relatively independent tools built around a single small kernel

I modularity, re-usable software components
I everything is a file

I the filesystem is the main means of communication
I printer, terminal, drives, . . . are all files
I most commands are files: files can be made executable and thus become commands

I shell scripting + command language to combine different tools

I hierarchical file system with no limit on hierarchy
I command interpreter is just another program (shell)

I makes it very easy to create new commands and thereby extend the language

I all files: newline-delimited ASCII

I use of regular expressions

I self-documenting (man)

S.F. Siegel � CISC 372: Parallel Computing � Fall 2020 � Unix 5



UNIX: File system

I the file system is a rooted tree

I the root is /

I a/b/c
I c is a child of b is a child of a
I a and b are directories (a kind of file)
I c may or may not be a directory (but is a file)

I each file has certain metadata associated to it by the OS
I owner: ID number of the user who “owns” this file
I group: ID number of the group for this file
I permissions: who can read/write/execute this file

I permissions for the owner
I permissions for the group
I permissions for everyone else
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Using the bash shell

I interactive: prompt, you type a command, get a response, repeat

I an any time, you are “in” a directory (point in the hierarchy)
I the working directory

I ls : list the contents (children) of the working directory
I ls -l : long format: show the user, group, file size, permissions, etc.
I ls -a: show all files including the hidden ones (start with .)

I pwd : print working directory
I cd : change directory to another directory

I argument to cd is a path to a directory
I argument can be absolute or relative
I absolute: starts with / (root)
I relative: starts with anything else, is interpreted to be a direction starting from working

directory

I mv a b: move a file from a to b
I this can be used to rename a file
I or it can be used to move a file into another directory (change the hierarchy)
I remember: “file” above can be a directory
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bash shell commands, cont.

I cp a b : copy a file to another directory (or file)

I rm a : remove the file named a

I rmdir a : remove the empty directory named a

I man cmd : show the manual page for the command cmd
I chmod : change the permissions on a file

I chmod ugo+rx foo
I give everyone read and execute permission on file foo

I chmod go-w foo
I take away write permission from group and others on foo

I chown : change the owner of the file

I chgrp : change the group of the file

I touch filename : creates an empty file with that name

I cat filename : print the file to the terminal

I more filename : page through the file one screen at a time

I bash : start (another) bash shell
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Exercise 1

1. Create a directory in your home directory called A.

2. Create two sub-directories of A called B and C.

3. Adjust the permissions of C so that only you can read, write or change into it.

4. Create a file called foo.txt in C.

5. Copy foo.txt to B. Check that both copies are really there.

6. Delete both copies of foo.txt.

7. Delete B and C (command: rmdir).

8. Delete A.
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Execution, environment

I many different kinds of executable files can be created
I shell (e.g., bash) scripts
I files created by compiling a C program, etc.

I the file then becomes a command
I just type the full path to the file (and any command line arguments)
I the user doing this must have execute permission on the file

I to avoid typing the full path, put the file “in your PATH”
I PATH is an environment variable

I a variable used by the shell

I PATH is a colon-separated list of directories
I when you type a command in the shell, it looks in the directories in your path for a file

with that name (in order)
I if and when it finds the file, it executes it
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Execution, environment, cont.

I X=foo : set environment variable X to foo

I $X : expands to current value held by environment variable X

I echo $X : print the value of the environment variable X

I export X=foo : set X to foo and carry this over to all children shells
I export PATH=/users/joe/bin:$PATH

I add /users/joe/bin to the front of the list of directories in the PATH
I set : show the current environment
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Package managers

I installing, configuring, organizing, and managing software is hard
I even with make

I modern Unix distributions come with package managers
I maintain large databases of software “packages” and dependencies

I e.g., Subversion 1.9.2 requires gcc 4.6.2 and . . .

I these make it very easy to install, update, uninstall software and keep everything consistent
I Mac

I MacPorts: https://www.macports.org
I Homebrew: https://brew.sh

I Ubuntu, Debian
I Advanced Packaging Tool (APT): https://help.ubuntu.com/community/AptGet/Howto
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APT

Common commands:

1. apt-get install 〈package_name〉
I install a package

2. apt-get update
I update your local list of packages

3. apt-get upgrade
I upgrade all your installed packages to the latest versions

4. apt-cache search 〈search_term〉
I search for packages with names or descriptions matching the string

5. apt-cache show 〈package_name〉
I show the description of the package and other information

Note: Most commands must be preceded by sudo.
See

I https://help.ubuntu.com/community/AptGet/Howto

for many more commands and deatils.
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MacPorts

Common commands:

1. port install 〈package_name〉
I install a package

2. port selfupdate
I update your local list of packages

3. port upgrade outdated
I upgrade all your installed packages to the latest versions

4. port search 〈search_term〉
I search for packages with names or descriptions matching the string

5. port info 〈package_name〉
I show the description of the package and other information

Note: Most commands must be preceded by sudo.
See

I https://guide.macports.org/#using.port

for many more commands and deatils.
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Text editors

There are many, but some of the most popular are. . .

1. pico, nano (simple, easy-to-use, not powerful enough for most programming)

2. vi (universal, dating back to mid-late 1970s)

3. emacs (powerful, extensible, also mid 1970s)
I recommended
I get: use package manager!
I learn: https://www.gnu.org/software/emacs/tour/
I quick reference card:

https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf

Choose your editor:

I in your home directory, find file .bash_profile

I or create new file with that name, if it is not there

I any bash commands you put here will be executed every time you log on

I add line: export EDITOR=emacs

I this will become your default editor for many different tasks
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Emacs: thousands of commands with keyboard binding
I C-x C-f: open file

I C=control, push and hold as you type the
next character

I C-x C-s: save file

I C-x C-w: write file (“save as. . . ”)

I C-a: move to beginning of line

I C-e: move to end of line

I C-n: move to next line

I C-p: move to previous line

I C-f: move forward one character

I C-b: move backward one character

I C-v: move forward one page

I M-v: move backward one page

I M=meta key, usually ESC, maybe option

I C-spc: set the mark

I C-w: cut everything from the mark to current
position (the “region”), copying it into the
buffer

I M-w: copy the current region into the buffer
without cutting

I C-y: yank from the buffer

I C-g: cancel whatever you’re in the middle of

I C-s: search forward incrementally

I C-x u: undo (as many times as you want)
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Exercise 2

1. Create a directory called ex2 and change into it.

2. Create a new file named hi.c with these contents:

#include <stdio.h>

int main() {

printf("Hi there\n");

}

3. Compile the program: cc -o hi hi.c

4. List the directory. You should see a file hi.

5. Change the permissions on hi so anyone can execute it.

6. Execute hi: ./hi

7. Put the directory containing hi in your PATH.

8. Change into some other directories and type hi.

Congrats: you have extended the language of your OS.
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make

make is a utility for automating builds and other tasks that have complex dependency graphs.
Example. You are developing a C program with source files:

1. header1.h

2. header2.h

3. source1.c, which includes header1.h, and

4. source2.c, which includes header1.h and header2.h

To build the binary app you issue the following command:

1. cc -c source1.c [produces source1.o]

2. cc -c source2.c [produces source2.o]

3. cc -o app source1.o source2.o [produces app]
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make: dependency graph

header2.hheader1.hsource1.c source2.c

source1.o source2.o

app

I there is one build step for each non-leaf node in the graph
I suppose you modify header1.h

I you need to repeat all 3 build steps

I suppose you modify header2.h
I you only need to rebuild source2.o and app

I now imagine you have hundreds of nodes in a complex directed graph

I goal: when files are modified, figure out the minimal set of build steps to bring the system
up-to-date
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Makefile

Put the following in a file called “Makefile”:

app: source1.o source2.o

cc -o app source1.o source2.o

source1.o: source1.c header1.h

cc -c source1.c

source2.o: source2.c header1.h header2.h

cc -c source2.c

Then just type “make”.
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What make does

I make will figure out which nodes need rebuilding
I the Makefile consists of a set of rules

I each rule has a target (left of colon)
I followed by a set of prerequisites
I then one or more recipes (executable actions to build the target)

I by examining time-stamps, make can tell if a target is older than one of its dependencies
I such a target needs to be re-built
I anything that depends on that target also needs to be re-built, etc.

I make executes the necessary recipes in the right order
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