
CISC 372: Parallel Computing

C, part 1

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

siegel@udel.edu

What is C?

I 1972, Dennis Ritchie, Bell Labs
I a programming language defined by an international standard

I currently ISO/IEC 9899:2018 : Programming Language — C (“C18” or “C17”)
I spec in docs folder on public svn repo

I characteristics
I general purpose
I imperative
I static types
I structured programming
I lexical scopes
I recursion
I “low-level”

I memory is a sequence of bytes, pointers
I “a portable assembly language”

I unlike modern languages, C has unspecified and undefined behavior
I the standard leaves open many choices to the implementation
I “unspecified”: a finite number of implementation-specific choices
I “undefined”: anything can happen; should always be considered defects

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 2

https://web.archive.org/web/20181230041359/http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf

C++

C

What you learn in CISC 220What you learn in CISC 210

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 3

Translation of a C program

foo.c
C source

ylib.h
included

file

xlib.h
included

file

Preprocessor
foo.i

translation
unit

Compiler foo.o
object file Linker

foo.exe
executable

file

xlib.a
library

ylib.a
library

foo2.o
object file

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 4

Typical command line syntax of a C compiler

I cc -o foo.exec foo.c
I preprocess, compile, and link foo.c creating executable foo.exec
I suitable for simple programs consisting of one translation unit

I cc -E -o foo.i foo.c
I preprocess only, sending output to foo.i
I useful for seeing what the preprocessor is doing; debugging

I cc -c -o foo.o foo.c
I preprocess and compile only, creating object file foo.o

I cc -o foo.exec foo1.o foo2.o foo3.o
I link object files foo1.o, foo2.o, foo3.o and libraries to form executable foo.exec

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 5

Preprocessor directives

I #include "filename" or #include <filename>
I insert contents of filename here

I #define X some text
I let X = “some text”

I #define X
I let X be the empty string — but still defined

I #ifdef X

...

#endif

if X is defined, include ...

I #ifdef X

...

#else

...

#endif

if X is defined, include ...

else include ...

I #if defined(X) && Y>2

...S.F. Siegel � CISC 372: Parallel Computing � C, part 1 6

Preprocessor example motivation: constants

The length in a C array declaration in file scope must be a
constant expression . . .

I int a[100]; : good

I const int n=100;

int a[n];

: may or may not work

I 100 is definitely a constant expression

I is n a constant expression? that’s up to the C implementation
I your goal should be to write portable code

I will work for any conforming C compiler
I compile with -pedantic to see if you rely on any non-portable features

basie:tmp siegel$ cc -pedantic -std=c11 tmp.c

tmp.c:2:5: warning: size of static array must be an integer constant

expression [-Wpedantic]

int a[n];

^

1 warning generated.

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 7

Preprocessor example usage: constants

This always works:

#define N 100

int a[N];

int main() {

for (int i=0; i<N; i++)

a[i] = i;

}

After preprocessing, the code above becomes

int a[100];

int main() {

for (int i=0; i<100; i++)

a[i] = i;

}

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 8

Defining preprocessor macros on the command line

Compiling with the flag. . .
I -DX

I equivalent to inserting #define X at the beginning of the file

I -DX=blah
I equivalent to inserting #define X blah at the beginning of the file

Example:

// the preprocessor macro N must be defined (length of array a)

int a[N];

int main() {

for (int i=0; i<N; i++)

a[i] = i;

}

Compile:

cc -pedantic -DN=100 tmp.c

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 9

Example: boolean flags controlling compilation

// the preprocessor macro N must be defined (length of array a)

// define DEBUG to see debugging output

#include <stdio.h>

int a[N];

int main() {

#ifdef DEBUG

printf("Entering for loop with N=%d\n", N);

fflush(stdout);

#endif

for (int i=0; i<N; i++)

a[i] = i;

#ifdef DEBUG

printf("Exiting for loop.\n");

fflush(stdout);

#endif

}

To compile a “debugging version” of this program:

cc -pedantic -DDEBUG -DN=100 tmp.c
S.F. Siegel � CISC 372: Parallel Computing � C, part 1 10

Preprocessor: Function-like macros

I the macros above are called object-like macros

I you can also #define function-like macros

#define MAX(x,y) ((x)>=(y) ? (x) : (y))

int main() {

int m = MAX(N, 10);

}

expands to

int main() {

int m = ((N)>=(10) ? (N) : (10));

}

I why the abundance of parentheses?

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 11

Function-like macros: beware the pitfalls!

#define ADD(x,y) x+y

#define MUL(x,y) x*y

What do these expand to?

I ADD(1,2)*3

1+2*3 = 7

I MUL(2,3+4) 2*3+4 = 10

Better:

#define ADD(x,y) ((x)+(y))

#define MUL(x,y) ((x)*(y))

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 12

Function-like macros: beware the pitfalls!

#define ADD(x,y) x+y

#define MUL(x,y) x*y

What do these expand to?

I ADD(1,2)*3 1+2*3 = 7

I MUL(2,3+4)

2*3+4 = 10

Better:

#define ADD(x,y) ((x)+(y))

#define MUL(x,y) ((x)*(y))

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 12

Function-like macros: beware the pitfalls!

#define ADD(x,y) x+y

#define MUL(x,y) x*y

What do these expand to?

I ADD(1,2)*3 1+2*3 = 7

I MUL(2,3+4) 2*3+4 = 10

Better:

#define ADD(x,y) ((x)+(y))

#define MUL(x,y) ((x)*(y))

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 12

Structure of a C program

After preprocessing, the program consists of a sequence of
I declarations

I variables
I int x;

I types
I typedef double D;

I enumerations
I enum Color { RED=0, GREEN=1, BLUE=2 };

I function prototypes
I int sgn(double x);

I function definitions
I int sgn(double x) {

if (x>0)

return 1;

else if (x<0)

return -1;

else return 0;

}
S.F. Siegel � CISC 372: Parallel Computing � C, part 1 13

Types

I C is statically typed
I every variable and expression has a type that is known at compile time

I “statically”
I before running the program

I you should be able to read a program and identify the type of any expression
I a type can be complete or incomplete
I every complete type has a size

I the number of bytes required to store one element of that type
I sizeof(T) is an expression that returns the size of type T

I this is a positive integer
I examples

I sizeof(int)
I often 4, sometimes 8
I must be big enough so that int can hold at least −32767 .. 32767

I sizeof(float[10])
I size of an array of 10 floats
I equals 10 ∗ sizeof(float)

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 14

char: the smallest type

I char : size is always one byte
I a byte has at least 8 bits
I the smallest addressable unit of memory

I signed char : includes at least −128..127
I signed means the type includes positive and negative integers (and 0)

I unsigned char : includes at least 0..255
I unsigned means the type includes only nonnegative integers

I char is either signed char or unsigned char
I which one is unspecified

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 15

Other integer types

I (short | | long) (signed | unsigned) int
I 3 ∗ 2 = 6 combinations, each a different type
I short signed int, short unsigned int, signed int, . . .

I abbreviations: int is optional, signed is the default
I short = short int = short signed int
I long = long int = long signed int
I int = signed int
I unsigned short = unsigned short int
I unsigned = unsigned int
I unsigned long = unsigned long int

I sizes
I the C Standard specifies minimum ranges for each of these types
I also short ≤ “medium” ≤ long

I _Bool
I consists of exactly 0 and 1
I a subtype of int

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 16

Floating types

I float
I floating point
I typically, 4 bytes = 32 bits

I double
I double precision floating point
I at least as precise as float
I typically, 8 bytes = 64 bits

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 17

Simple declarations

For these basic types

I syntax: type-name variable-name ;

I can declare multiple variables of the same type

I an initializer is optional

Examples:

I int x;

I double y;

I unsigned long z;

I int x, y;

I int x = 3;

I int x=3, y, z=-17;

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 18

Array types: declaration

Declaration

I if T (x) declares x to have type T

I then T (a[]) declares a to have type array-of-T

I and T (a[n]) declares a to have type array-of-length-n-of-T

Declaration examples
I double a[]

I T (x) = double x
I declares x to have type double

I T (a[]) = double a[]
I declares a to have type array-of-double
I incomplete array type

I double a[n]
I T (x) = double x
I T (a[n]) = double a[n]

I declares a to have type array-of-length-n-of-double
I complete array type

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 19

Complete and incomplete types

I in some places, a complete array type is required
I whenever space must be allocated for the array
I an ordinary (not parameter) declaration of a local or global variable of array type

I in other places a complete or incomplete array type may be used
I a parameter declaration of array type
I as the base type in a pointer type

I the element type of an array type must be a complete type
I in multi-dimensional arrays, only the first length can be unspecified
I int a[][10][20];

I incomplete type, but complete element type
I OK sometimes (e.g., function parameter)

I int a[10][];
I incomplete element type – bad

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 20

Array example: simple 2d-array

#define N 2

#define M 3

int a[N][M];

int main() {

// initialize...

for (int i=0; i<N; i++)

for (int j=0; j<M; j++)

a[i][j] = i*M+j;

// print...

for (int i=0; i<N; i++) {

for (int j=0; j<M; j++)

printf("%d ", a[i][j]);

printf("\n");

}

}

Compile and execute:
basie:tmp siegel$ cc tmp.c

basie:tmp siegel$./a.out

0 1 2

3 4 5

basie:tmp

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 21

Exercise: transpose a square matrix

#define N 3

int a[N][N];

int main() {

// initialize...

for (int i=0; i<N; i++)

for (int j=0; j<N; j++)

a[i][j] = i*N+j;

// INSERT: in-place transpose

// print...

for (int i=0; i<N; i++) {

for (int j=0; j<N; j++)

printf("%d ", a[i][j]);

printf("\n");

}

}

basie:tmp siegel$./a.out

0 3 6

1 4 7

2 5 8

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 22

Pointers

I a pointer is the address of a memory location

I pointers are first-class objects in C

I there are pointer types

I a pointer can be assigned using =

I a pointer can be passed as an argument in a function call

I a pointer can be returned by a function

I there are operations which consume pointers and return pointers

I a pointer is just like any other kind of data

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 23

Pointer types

I declaration
I if T (x) declares x to have type T
I then T (*p) declares p to have type pointer-to-T

I declaration examples
I double *p

I T (x) = double x
I T (*p) = double *p
I p has type pointer-to-double

I unsigned long int *p
I T (x) = unsigned long int x
I T (*p) = unsigned long int *p
I p has type pointer-to-unsigned-long-int

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 24

Pointer operations

There are two basic operations on pointers:
I address-of (&)

I given a variable, returns the address of that variable
I if x has type T then &x has type pointer-to-T
I example

I int x;

int *p = &x; // address of x

I dereference (*)
I given a pointer, returns the value stored at that address
I if p has type pointer-to-T then *p has type T
I example

I int x = 5;

int *p = &x;

int y = 2 * (*p); // 10

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 25

Pointer operations, cont

I *p can also be used on the left-hand side of an assignment

double x = 3.1415;

double *p = &x;

*p = 2.71828;

printf("%lf", x); // 2.71828

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 26

Pointers into arrays

I you can also take the address of array elements

float a[10];

float *p = &a[5];

*p = 17;

p

17

sizeof(float)

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 27

Pointer into 2d-array

int a[2][3];

int *p = &a[0][2];

*p = 13;

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]

p

sizeof(int)

13

p

S.F. Siegel � CISC 372: Parallel Computing � C, part 1 28

