
CISC 372: Parallel Computing

C, part 2

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

siegel@udel.edu

Pointer arithmetic

if all of the following hold
I p is an expression of type pointer-to-T and T is a complete type (size of T is known!!)
I i is an expression of integer type

then
I p+i (= i+p) is an expression of type pointer-to-T
I it points to the address that is i T ’s past p
I if sizeof(T) is n bytes, then p+i is i ∗ n bytes after p

float a[10];

float *p = &a[0], *q = p+3, *r = q+7;

p

sizeof(float)

q r

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 2

Pointer arithmetic within a 2d-array

int a[2][3];

int *p = &a[0][2];

int *q = p+2; // q == &a[1][1]

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]

p

sizeof(int)

q

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 3

The real meaning of the index operator [..]

The meaning of x[y]:

I x[y] is syntactic sugar for *(x+y)
I if p is a pointer-to-T , then p[i] means *(p+i)

I recall: this can be used to read or write to location p+i

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 4

Example: index operator and pointers
#include <stdio.h>

/* assigns val to p[i], ..., p[i+n-1] */

void set_range(int *p, int n, int val) {

for (int i=0; i<n; i++) p[i] = val;

}

/* prints p[0], ..., p[n-1] */

void print(int *p, int n) {

for (int i=0; i<n; i++) printf("%d ", p[i]);

printf("\n");

}

int main() {

int a[10];

set_range(&a[0], 10, 0); // a[0..9]=0

print(&a[0], 10);

set_range(&a[3], 5, 8); // a[3..7]=8

print(&a[0], 10);

}

basie:c siegel$ cc ptr1.c

basie:c siegel$./a.out

0 0 0 0 0 0 0 0 0 0

0 0 0 8 8 8 8 8 0 0

basie:c

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 5

The type void*

I there is a special pointer type named void*

I the type pointed to could be anything

I a supertype of all pointer types

I any pointer type can be converted to void*

I any void* type can be converted to any pointer type

I converting from T* to void* then back to T* yields the original pointer
I this is necessary in order to design generic functions

I consume a pointer to different kinds of data

I restrictions
I a void pointer can not be dereferenced (why?)
I you can not do pointer arithmetic on a void pointer (why?)
I if you want to do these things, first cast to a non-void-pointer

I void *p; ...

int *q = (int*)p; // better be sure this is OK

*q = *q + 10;

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 6

The type void*

I there is a special pointer type named void*

I the type pointed to could be anything

I a supertype of all pointer types

I any pointer type can be converted to void*

I any void* type can be converted to any pointer type

I converting from T* to void* then back to T* yields the original pointer
I this is necessary in order to design generic functions

I consume a pointer to different kinds of data

I restrictions
I a void pointer can not be dereferenced (why?)
I you can not do pointer arithmetic on a void pointer (why?)
I if you want to do these things, first cast to a non-void-pointer

I void *p; ...

int *q = (int*)p; // better be sure this is OK

*q = *q + 10;

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 6

The type void*

I there is a special pointer type named void*

I the type pointed to could be anything

I a supertype of all pointer types

I any pointer type can be converted to void*

I any void* type can be converted to any pointer type

I converting from T* to void* then back to T* yields the original pointer
I this is necessary in order to design generic functions

I consume a pointer to different kinds of data

I restrictions
I a void pointer can not be dereferenced (why?)
I you can not do pointer arithmetic on a void pointer (why?)
I if you want to do these things, first cast to a non-void-pointer

I void *p; ...

int *q = (int*)p; // better be sure this is OK

*q = *q + 10;

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 6

The type void*

I there is a special pointer type named void*

I the type pointed to could be anything

I a supertype of all pointer types

I any pointer type can be converted to void*

I any void* type can be converted to any pointer type

I converting from T* to void* then back to T* yields the original pointer
I this is necessary in order to design generic functions

I consume a pointer to different kinds of data

I restrictions
I a void pointer can not be dereferenced (why?)
I you can not do pointer arithmetic on a void pointer (why?)
I if you want to do these things, first cast to a non-void-pointer

I void *p; ...

int *q = (int*)p; // better be sure this is OK

*q = *q + 10;

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 6

The type void*

I there is a special pointer type named void*

I the type pointed to could be anything

I a supertype of all pointer types

I any pointer type can be converted to void*

I any void* type can be converted to any pointer type

I converting from T* to void* then back to T* yields the original pointer

I this is necessary in order to design generic functions
I consume a pointer to different kinds of data

I restrictions
I a void pointer can not be dereferenced (why?)
I you can not do pointer arithmetic on a void pointer (why?)
I if you want to do these things, first cast to a non-void-pointer

I void *p; ...

int *q = (int*)p; // better be sure this is OK

*q = *q + 10;

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 6

The type void*

I there is a special pointer type named void*

I the type pointed to could be anything

I a supertype of all pointer types

I any pointer type can be converted to void*

I any void* type can be converted to any pointer type

I converting from T* to void* then back to T* yields the original pointer
I this is necessary in order to design generic functions

I consume a pointer to different kinds of data

I restrictions
I a void pointer can not be dereferenced (why?)
I you can not do pointer arithmetic on a void pointer (why?)
I if you want to do these things, first cast to a non-void-pointer

I void *p; ...

int *q = (int*)p; // better be sure this is OK

*q = *q + 10;

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 6

The type void*

I there is a special pointer type named void*

I the type pointed to could be anything

I a supertype of all pointer types

I any pointer type can be converted to void*

I any void* type can be converted to any pointer type

I converting from T* to void* then back to T* yields the original pointer
I this is necessary in order to design generic functions

I consume a pointer to different kinds of data

I restrictions
I a void pointer can not be dereferenced (why?)

I you can not do pointer arithmetic on a void pointer (why?)
I if you want to do these things, first cast to a non-void-pointer

I void *p; ...

int *q = (int*)p; // better be sure this is OK

*q = *q + 10;

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 6

The type void*

I there is a special pointer type named void*

I the type pointed to could be anything

I a supertype of all pointer types

I any pointer type can be converted to void*

I any void* type can be converted to any pointer type

I converting from T* to void* then back to T* yields the original pointer
I this is necessary in order to design generic functions

I consume a pointer to different kinds of data

I restrictions
I a void pointer can not be dereferenced (why?)
I you can not do pointer arithmetic on a void pointer (why?)

I if you want to do these things, first cast to a non-void-pointer
I void *p; ...

int *q = (int*)p; // better be sure this is OK

*q = *q + 10;

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 6

The type void*

I there is a special pointer type named void*

I the type pointed to could be anything

I a supertype of all pointer types

I any pointer type can be converted to void*

I any void* type can be converted to any pointer type

I converting from T* to void* then back to T* yields the original pointer
I this is necessary in order to design generic functions

I consume a pointer to different kinds of data

I restrictions
I a void pointer can not be dereferenced (why?)
I you can not do pointer arithmetic on a void pointer (why?)
I if you want to do these things, first cast to a non-void-pointer

I void *p; ...

int *q = (int*)p; // better be sure this is OK

*q = *q + 10;
S.F. Siegel � CISC 372: Parallel Computing � C, part 2 6

Example: void*

#include <assert.h>

int main() {

int x = 5;

int *p = &x;

double y = 3.1415;

double *q = &y;

void *r;

r = p; // conversion from int* to void*

p = r; // conversion back to int*

assert(*p == 5);

r = q; // conversion from double* to void*

q = r; // conversion back to double*

assert(*q == 3.1415);

}

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 7

C’s array-pointer “pun”

In most contexts:
I any expression of type array-of-T is automatically converted to an expression of type

pointer-to-T
I pointing to the first (i.e., 0-th) element of the array

I i.e. a and &a[0] denote the same thing
I the pointer to element 0 of array a

#include <assert.h>

int main() {

int a[10];

int *p;

p = a; // same as p=&a[0]

assert(a[3] == *(p+3));

assert(a[3] == *(a+3));

}

Exceptions: sizeof and a few other places

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 8

C’s array-pointer “pun”

In most contexts:
I any expression of type array-of-T is automatically converted to an expression of type

pointer-to-T
I pointing to the first (i.e., 0-th) element of the array

I i.e. a and &a[0] denote the same thing
I the pointer to element 0 of array a

#include <assert.h>

int main() {

int a[10];

int *p;

p = a; // same as p=&a[0]

assert(a[3] == *(p+3));

assert(a[3] == *(a+3));

}

Exceptions: sizeof and a few other places

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 8

C’s array-pointer “pun”

In most contexts:
I any expression of type array-of-T is automatically converted to an expression of type

pointer-to-T
I pointing to the first (i.e., 0-th) element of the array

I i.e. a and &a[0] denote the same thing
I the pointer to element 0 of array a

#include <assert.h>

int main() {

int a[10];

int *p;

p = a; // same as p=&a[0]

assert(a[3] == *(p+3));

assert(a[3] == *(a+3));

}

Exceptions: sizeof and a few other places

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 8

C’s array-pointer “pun”

In most contexts:
I any expression of type array-of-T is automatically converted to an expression of type

pointer-to-T
I pointing to the first (i.e., 0-th) element of the array

I i.e. a and &a[0] denote the same thing
I the pointer to element 0 of array a

#include <assert.h>

int main() {

int a[10];

int *p;

p = a; // same as p=&a[0]

assert(a[3] == *(p+3));

assert(a[3] == *(a+3));

}

Exceptions: sizeof and a few other places

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 8

C’s array pointer pun, cont.

I any formal parameter in a function header of type array-of-T is converted to type
pointer-to-T

I example: the following all mean exactly the same thing:
I int f(double *a);
I int f(double a[]);
I int f(double a[1000]);

I the 1000 is simply ignored
I no reason to do this, unless it is as documentation

I one difference: an array can not occur on left side of =
I int a[10];

int b[10];

int *p;

p = a; // yes

p = b; // yes

a = p; // no!

a = b; // no!

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 9

C’s array pointer pun, cont.

I any formal parameter in a function header of type array-of-T is converted to type
pointer-to-T

I example: the following all mean exactly the same thing:
I int f(double *a);

I int f(double a[]);
I int f(double a[1000]);

I the 1000 is simply ignored
I no reason to do this, unless it is as documentation

I one difference: an array can not occur on left side of =
I int a[10];

int b[10];

int *p;

p = a; // yes

p = b; // yes

a = p; // no!

a = b; // no!

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 9

C’s array pointer pun, cont.

I any formal parameter in a function header of type array-of-T is converted to type
pointer-to-T

I example: the following all mean exactly the same thing:
I int f(double *a);
I int f(double a[]);

I int f(double a[1000]);
I the 1000 is simply ignored
I no reason to do this, unless it is as documentation

I one difference: an array can not occur on left side of =
I int a[10];

int b[10];

int *p;

p = a; // yes

p = b; // yes

a = p; // no!

a = b; // no!

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 9

C’s array pointer pun, cont.

I any formal parameter in a function header of type array-of-T is converted to type
pointer-to-T

I example: the following all mean exactly the same thing:
I int f(double *a);
I int f(double a[]);
I int f(double a[1000]);

I the 1000 is simply ignored
I no reason to do this, unless it is as documentation

I one difference: an array can not occur on left side of =
I int a[10];

int b[10];

int *p;

p = a; // yes

p = b; // yes

a = p; // no!

a = b; // no!

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 9

C’s array pointer pun, cont.

I any formal parameter in a function header of type array-of-T is converted to type
pointer-to-T

I example: the following all mean exactly the same thing:
I int f(double *a);
I int f(double a[]);
I int f(double a[1000]);

I the 1000 is simply ignored
I no reason to do this, unless it is as documentation

I one difference: an array can not occur on left side of =
I int a[10];

int b[10];

int *p;

p = a; // yes

p = b; // yes

a = p; // no!

a = b; // no!

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 9

Allocating sequences of data

Multiple ways:

1. double a[10];
I in the file scope
I allocates an array that persists for the entire life of the program
I can be accessed in any scope
I length must be a constant expression
I cannot be used if length is unknown at compile time

2. double a[n];
I in a local scope
I allocates an array that persists until the end of that scope is reached
I can be accessed in that scope and sub-scopes, and through pointers
I length can be any integer expression

3. malloc and free
I dynamic memory allocation
I memory allocated in the heap
I programmer controls when allocation and deallocation occur
I all accesses through pointers

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 11

Allocating sequences of data

Multiple ways:

1. double a[10];
I in the file scope
I allocates an array that persists for the entire life of the program
I can be accessed in any scope
I length must be a constant expression
I cannot be used if length is unknown at compile time

2. double a[n];
I in a local scope
I allocates an array that persists until the end of that scope is reached
I can be accessed in that scope and sub-scopes, and through pointers
I length can be any integer expression

3. malloc and free
I dynamic memory allocation
I memory allocated in the heap
I programmer controls when allocation and deallocation occur
I all accesses through pointers

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 11

Allocating sequences of data

Multiple ways:

1. double a[10];
I in the file scope
I allocates an array that persists for the entire life of the program
I can be accessed in any scope
I length must be a constant expression
I cannot be used if length is unknown at compile time

2. double a[n];
I in a local scope
I allocates an array that persists until the end of that scope is reached
I can be accessed in that scope and sub-scopes, and through pointers
I length can be any integer expression

3. malloc and free
I dynamic memory allocation
I memory allocated in the heap
I programmer controls when allocation and deallocation occur
I all accesses through pointers

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 11

Heap allocation: malloc and free

I malloc and free are functions defined in stdlib

I malloc
I consumes argument of integer type

I the number of bytes to allocate

I allocates that many bytes in the heap
I returns void*

I address of first byte allocated
I typically, this is converted immediately into a non-void pointer type

I example
I int *p = (int*)malloc(10*sizeof(int));
I allocates space for 10 ints and returns pointer to beginning of that region

I free
I consumes a void* pointer previously produced by malloc
I deallocates the object

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 12

Heap allocation: malloc and free

I malloc and free are functions defined in stdlib

I malloc
I consumes argument of integer type

I the number of bytes to allocate

I allocates that many bytes in the heap
I returns void*

I address of first byte allocated
I typically, this is converted immediately into a non-void pointer type

I example
I int *p = (int*)malloc(10*sizeof(int));
I allocates space for 10 ints and returns pointer to beginning of that region

I free
I consumes a void* pointer previously produced by malloc
I deallocates the object

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 12

Heap allocation: malloc and free

I malloc and free are functions defined in stdlib

I malloc
I consumes argument of integer type

I the number of bytes to allocate

I allocates that many bytes in the heap

I returns void*
I address of first byte allocated
I typically, this is converted immediately into a non-void pointer type

I example
I int *p = (int*)malloc(10*sizeof(int));
I allocates space for 10 ints and returns pointer to beginning of that region

I free
I consumes a void* pointer previously produced by malloc
I deallocates the object

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 12

Heap allocation: malloc and free

I malloc and free are functions defined in stdlib

I malloc
I consumes argument of integer type

I the number of bytes to allocate

I allocates that many bytes in the heap
I returns void*

I address of first byte allocated
I typically, this is converted immediately into a non-void pointer type

I example
I int *p = (int*)malloc(10*sizeof(int));
I allocates space for 10 ints and returns pointer to beginning of that region

I free
I consumes a void* pointer previously produced by malloc
I deallocates the object

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 12

Heap allocation: malloc and free

I malloc and free are functions defined in stdlib

I malloc
I consumes argument of integer type

I the number of bytes to allocate

I allocates that many bytes in the heap
I returns void*

I address of first byte allocated
I typically, this is converted immediately into a non-void pointer type

I example
I int *p = (int*)malloc(10*sizeof(int));
I allocates space for 10 ints and returns pointer to beginning of that region

I free
I consumes a void* pointer previously produced by malloc
I deallocates the object

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 12

Heap allocation: malloc and free

I malloc and free are functions defined in stdlib

I malloc
I consumes argument of integer type

I the number of bytes to allocate

I allocates that many bytes in the heap
I returns void*

I address of first byte allocated
I typically, this is converted immediately into a non-void pointer type

I example
I int *p = (int*)malloc(10*sizeof(int));
I allocates space for 10 ints and returns pointer to beginning of that region

I free
I consumes a void* pointer previously produced by malloc
I deallocates the object

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 12

Heap allocation: example

#include <stdlib.h>

#include <assert.h>

#include <stdio.h>

void print(int *p, int n) {

for (int i=0; i<n; i++) printf("%d ", p[i]);

printf("\n");

}

int main(int argc, char * argv[]) {

int n = atoi(argv[1]); // converts first command-line arg to int

int * p = malloc(n*sizeof(int));

assert(p); // check that malloc succeeded

for (int i=0; i<n; i++) p[i] = i;

print(p, n);

free(p);

}

basie:c siegel$ cc malloc1.c

basie:c siegel$./a.out 10

0 1 2 3 4 5 6 7 8 9

basie:c siegel$

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 13

Pointer types revisited

I declaration
I if T (x) declares x to have type T
I then T (*p) declares p to have type pointer-to-T

I declaration examples
I double *p

I T (x) = double x
I T (*p) = double *p
I p has type pointer-to-double

I double (*p)[10]
I T (x) = double x[10]
I T (*p) = double (*p)[10]
I p has type pointer-to-array-of-length-10-of-double

I the parentheses around *p are necessary
I [] binds more tightly than *
I *a[] = *(a[]) : a has type array-of-pointer-to-. . .
I (*p)[] : p has type pointer-to-array-of-. . .

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 14

Pointer types revisited

I declaration
I if T (x) declares x to have type T
I then T (*p) declares p to have type pointer-to-T

I declaration examples
I double *p

I T (x) = double x
I T (*p) = double *p
I p has type pointer-to-double

I double (*p)[10]
I T (x) = double x[10]
I T (*p) = double (*p)[10]
I p has type pointer-to-array-of-length-10-of-double

I the parentheses around *p are necessary
I [] binds more tightly than *
I *a[] = *(a[]) : a has type array-of-pointer-to-. . .
I (*p)[] : p has type pointer-to-array-of-. . .

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 14

Pointer types revisited

I declaration
I if T (x) declares x to have type T
I then T (*p) declares p to have type pointer-to-T

I declaration examples
I double *p

I T (x) = double x
I T (*p) = double *p
I p has type pointer-to-double

I double (*p)[10]
I T (x) = double x[10]
I T (*p) = double (*p)[10]
I p has type pointer-to-array-of-length-10-of-double

I the parentheses around *p are necessary
I [] binds more tightly than *
I *a[] = *(a[]) : a has type array-of-pointer-to-. . .
I (*p)[] : p has type pointer-to-array-of-. . .

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 14

Pointer types revisited

I declaration
I if T (x) declares x to have type T
I then T (*p) declares p to have type pointer-to-T

I declaration examples
I double *p

I T (x) = double x
I T (*p) = double *p
I p has type pointer-to-double

I double (*p)[10]
I T (x) = double x[10]
I T (*p) = double (*p)[10]
I p has type pointer-to-array-of-length-10-of-double

I the parentheses around *p are necessary
I [] binds more tightly than *
I *a[] = *(a[]) : a has type array-of-pointer-to-. . .
I (*p)[] : p has type pointer-to-array-of-. . .

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 14

Reading type declarations

I the rules above means types are specified “from the inside, out”

I think of declaration as a sequence of unary operations applied to variable of form [] and *

I Example: what is the type of a declared by: double a[n][m]
I array-of-length-n-of-(array-of-length-m-of-double)
I written hierarchically:

array-of-length-n-of

array-of-length-m-of

double

I Example: what is the type of p declared by : float **p
I pointer-to-(pointer-to-float)
I pointer-to

pointer-to

float

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 15

Reading type declarations

I the rules above means types are specified “from the inside, out”

I think of declaration as a sequence of unary operations applied to variable of form [] and *

I Example: what is the type of a declared by: double a[n][m]
I array-of-length-n-of-(array-of-length-m-of-double)
I written hierarchically:

array-of-length-n-of

array-of-length-m-of

double

I Example: what is the type of p declared by : float **p
I pointer-to-(pointer-to-float)
I pointer-to

pointer-to

float

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 15

Reading type declarations

I the rules above means types are specified “from the inside, out”

I think of declaration as a sequence of unary operations applied to variable of form [] and *

I Example: what is the type of a declared by: double a[n][m]
I array-of-length-n-of-(array-of-length-m-of-double)
I written hierarchically:

array-of-length-n-of

array-of-length-m-of

double

I Example: what is the type of p declared by : float **p
I pointer-to-(pointer-to-float)
I pointer-to

pointer-to

float

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 15

Reading type declarations

I the rules above means types are specified “from the inside, out”

I think of declaration as a sequence of unary operations applied to variable of form [] and *

I Example: what is the type of a declared by: double a[n][m]
I array-of-length-n-of-(array-of-length-m-of-double)
I written hierarchically:

array-of-length-n-of

array-of-length-m-of

double

I Example: what is the type of p declared by : float **p
I pointer-to-(pointer-to-float)
I pointer-to

pointer-to

float

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 15

Exercises: name the type

1. char *p[n]

I array-of-length-n-of-pointer-to-char

2. short (*p)[n]

I pointer-to-array-of-length-n-of-short

3. unsigned int *p[n][m]

I array-of-length-n-of-array-of-length-m-of-pointer-to-unsigned-int

4. unsigned long int *(*p[n])

I array-of-length-n-of-pointer-to-pointer-to-unsigned-long-int

5. long *((*p)[n])

I pointer-to-array-of-length-n-of-pointer-to-long

6. long *(*p)[n]

I pointer-to-array-of-length-n-of-pointer-to-long

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 16

Exercises: name the type

1. char *p[n]
I array-of-length-n-of-pointer-to-char

2. short (*p)[n]

I pointer-to-array-of-length-n-of-short

3. unsigned int *p[n][m]

I array-of-length-n-of-array-of-length-m-of-pointer-to-unsigned-int

4. unsigned long int *(*p[n])

I array-of-length-n-of-pointer-to-pointer-to-unsigned-long-int

5. long *((*p)[n])

I pointer-to-array-of-length-n-of-pointer-to-long

6. long *(*p)[n]

I pointer-to-array-of-length-n-of-pointer-to-long

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 16

Exercises: name the type

1. char *p[n]
I array-of-length-n-of-pointer-to-char

2. short (*p)[n]
I pointer-to-array-of-length-n-of-short

3. unsigned int *p[n][m]

I array-of-length-n-of-array-of-length-m-of-pointer-to-unsigned-int

4. unsigned long int *(*p[n])

I array-of-length-n-of-pointer-to-pointer-to-unsigned-long-int

5. long *((*p)[n])

I pointer-to-array-of-length-n-of-pointer-to-long

6. long *(*p)[n]

I pointer-to-array-of-length-n-of-pointer-to-long

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 16

Exercises: name the type

1. char *p[n]
I array-of-length-n-of-pointer-to-char

2. short (*p)[n]
I pointer-to-array-of-length-n-of-short

3. unsigned int *p[n][m]
I array-of-length-n-of-array-of-length-m-of-pointer-to-unsigned-int

4. unsigned long int *(*p[n])

I array-of-length-n-of-pointer-to-pointer-to-unsigned-long-int

5. long *((*p)[n])

I pointer-to-array-of-length-n-of-pointer-to-long

6. long *(*p)[n]

I pointer-to-array-of-length-n-of-pointer-to-long

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 16

Exercises: name the type

1. char *p[n]
I array-of-length-n-of-pointer-to-char

2. short (*p)[n]
I pointer-to-array-of-length-n-of-short

3. unsigned int *p[n][m]
I array-of-length-n-of-array-of-length-m-of-pointer-to-unsigned-int

4. unsigned long int *(*p[n])
I array-of-length-n-of-pointer-to-pointer-to-unsigned-long-int

5. long *((*p)[n])

I pointer-to-array-of-length-n-of-pointer-to-long

6. long *(*p)[n]

I pointer-to-array-of-length-n-of-pointer-to-long

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 16

Exercises: name the type

1. char *p[n]
I array-of-length-n-of-pointer-to-char

2. short (*p)[n]
I pointer-to-array-of-length-n-of-short

3. unsigned int *p[n][m]
I array-of-length-n-of-array-of-length-m-of-pointer-to-unsigned-int

4. unsigned long int *(*p[n])
I array-of-length-n-of-pointer-to-pointer-to-unsigned-long-int

5. long *((*p)[n])
I pointer-to-array-of-length-n-of-pointer-to-long

6. long *(*p)[n]

I pointer-to-array-of-length-n-of-pointer-to-long

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 16

Exercises: name the type

1. char *p[n]
I array-of-length-n-of-pointer-to-char

2. short (*p)[n]
I pointer-to-array-of-length-n-of-short

3. unsigned int *p[n][m]
I array-of-length-n-of-array-of-length-m-of-pointer-to-unsigned-int

4. unsigned long int *(*p[n])
I array-of-length-n-of-pointer-to-pointer-to-unsigned-long-int

5. long *((*p)[n])
I pointer-to-array-of-length-n-of-pointer-to-long

6. long *(*p)[n]
I pointer-to-array-of-length-n-of-pointer-to-long

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 16

Construct the declaration for the given type name

1. declare a to have type

array of length n of

pointer to

array of length m of

double

double (*a[n])[m]

2. declare b to have type

array of length n1 of

array of length n2 of

pointer to

array of length n3 of

pointer to

int

int *(*b[n1][n2])[n3]

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 17

Construct the declaration for the given type name

1. declare a to have type

array of length n of

pointer to

array of length m of

double

double (*a[n])[m]

2. declare b to have type

array of length n1 of

array of length n2 of

pointer to

array of length n3 of

pointer to

int

int *(*b[n1][n2])[n3]

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 17

Construct the declaration for the given type name

1. declare a to have type

array of length n of

pointer to

array of length m of

double

double (*a[n])[m]

2. declare b to have type

array of length n1 of

array of length n2 of

pointer to

array of length n3 of

pointer to

int

int *(*b[n1][n2])[n3]

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 17

C type names

I sometimes you need to name a type without declaring any variable

I sizeof(int)

I casts: (int*)x

I the type name is obtained by writing a variable delcaration and then erasing the variable

I double (*a[n])[m] → double (*[n])[m]

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 18

Heap-allocated 2d arrays: array of pointers

I problem: allocate on heap a 3× 4 array of floats
I solution: an array of length 3 of pointers

I each pointer points to an array of length 4 of floats (one row)
sizeof(float*)

sizeof(float)

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 20

Heap-allocated 2d arrays: array of pointers

I problem: allocate on heap a 3× 4 array of floats

I solution: an array of length 3 of pointers
I each pointer points to an array of length 4 of floats (one row)

sizeof(float*)

sizeof(float)

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 20

Heap-allocated 2d arrays: array of pointers

I problem: allocate on heap a 3× 4 array of floats
I solution: an array of length 3 of pointers

I each pointer points to an array of length 4 of floats (one row)

sizeof(float*)

sizeof(float)

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 20

Heap-allocated 2d arrays: array of pointers

I problem: allocate on heap a 3× 4 array of floats
I solution: an array of length 3 of pointers

I each pointer points to an array of length 4 of floats (one row)
sizeof(float*)

sizeof(float)

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 20

2d arrays: array of pointers: single allocation

I even better: allocate all rows at once in single malloc (see array2d.c)
sizeof(float*)

sizeof(float)

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 21

Structures

The following defines a new type named struct Show:

struct Show {

int channel; // this is an int field

char * name; // this is a string field

double cost; // this is a double field

};

struct Show show;

show.channel = 10;

show.name = "The 372 Show";

show.cost = 100000.00;

I struct Show is a type just like any other type

I can be used to declare variables, as function parameter type, can be returned by a
function, . . .

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 22

Structures, cont.

It may be convenient to give the new type a shorter name:

typedef struct _show {

int channel; // this is an int field

char * name; // this is a string field

double cost; // this is a double field

} Show;

I now you can just use Show instead of struct _show

I note: you can use the same name for the struct and the new type
I typedef struct X { ...} X;

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 23

Structures and pointers

I structures are often manipulated using pointers

I functions consuming a structure typically consume a pointer to the structure

I functions returning structures typically return a pointer to a structure

int getChannel(Show * show) {

return (*show).channel;

}

void setChannel(Show * show, int c) {

(*show).channel = c;

}

I this pattern is so popular that C provides a shortcut
I s->x is syntactic sugar for (*s).x

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 24

Structures and pointers

I structures are often manipulated using pointers

I functions consuming a structure typically consume a pointer to the structure

I functions returning structures typically return a pointer to a structure

int getChannel(Show * show) {

return (*show).channel;

}

void setChannel(Show * show, int c) {

(*show).channel = c;

}

I this pattern is so popular that C provides a shortcut
I s->x is syntactic sugar for (*s).x

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 24

Structures and pointers

I structures are often manipulated using pointers

I functions consuming a structure typically consume a pointer to the structure

I functions returning structures typically return a pointer to a structure

int getChannel(Show * show) {

return (*show).channel;

}

void setChannel(Show * show, int c) {

(*show).channel = c;

}

I this pattern is so popular that C provides a shortcut
I s->x is syntactic sugar for (*s).x

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 24

Structures and pointers, cont.

OK:

int getChannel(Show * show) {

return (*show).channel;

}

void setChannel(Show * show, int c) {

(*show).channel = c;

}

Better:

int getChannel(Show * show) {

return show->channel;

}

void setChannel(Show * show, int c) {

show->channel = c;

}

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 25

Structures and pointers, cont.

OK:

int getChannel(Show * show) {

return (*show).channel;

}

void setChannel(Show * show, int c) {

(*show).channel = c;

}

Better:

int getChannel(Show * show) {

return show->channel;

}

void setChannel(Show * show, int c) {

show->channel = c;

}

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 25

Arrays of structures

I one can create an array of structures, or

I one can create an array of pointers to structures.

Each has advantages (and disadvantages).

Show *shows[n]; // array of pointer to Show

for (int i=0; i<n; i++) {

Show * s = (Show*)malloc(sizeof(Show));

s->channel = i;

shows[i] = s;

}

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 26

Type definitions, revisited

I typedef provides a way to give a type a name

I the name can be used wherever a type is called for
I a long or complicated type name can be given a simple short name

I for convenience and readability

I a type that you may want to change in the future will only have to be changed in one place

I syntax: just like declaring a variable of that type, but add “typedef”
I typedef unsigned long int nat;

nat x=0, y=0;

I nat stands for the type unsigned-long-int

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 28

Type definitions, revisited, cont.

I struct node_s {

int data;

struct node_s *nxt;

};

typedef struct node_s * Node;

I Node stands for the type pointer-to-struct-node_s

I typedef struct node_s {

int data;

struct node_s *nxt;

} * Node;

I same as above, just more condensed form

S.F. Siegel � CISC 372: Parallel Computing � C, part 2 29

