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Message Passing Interface: Brief History

I late 1980s
I every vendor had their own message-passing library

I April 1992
I workshop led to working group on a message-passing standard
I involved academia, industry (vendors), users
I rather than choose one of the existing libraries, “big tent”

I 1994: MPI: A Message Passing Interface Standard (v1.0)
I defines an interface

I types
I constants
I functions

I versions 1.1, 1.2, 1.3, 2.0, 2.1, 2.2, 3.0, 3.1
I MPI 3.1 approved on June 4, 2015

I http://www.mpi-forum.org
I 868 pages

S.F. Siegel � CISC 372: Parallel Computing � MPI Intro 4

http://www.mpi-forum.org


Message Passing Interface: Brief History

I late 1980s
I every vendor had their own message-passing library

I April 1992
I workshop led to working group on a message-passing standard
I involved academia, industry (vendors), users
I rather than choose one of the existing libraries, “big tent”

I 1994: MPI: A Message Passing Interface Standard (v1.0)
I defines an interface

I types
I constants
I functions

I versions 1.1, 1.2, 1.3, 2.0, 2.1, 2.2, 3.0, 3.1
I MPI 3.1 approved on June 4, 2015

I http://www.mpi-forum.org
I 868 pages

S.F. Siegel � CISC 372: Parallel Computing � MPI Intro 4

http://www.mpi-forum.org


Message Passing Interface: Brief History

I late 1980s
I every vendor had their own message-passing library

I April 1992
I workshop led to working group on a message-passing standard
I involved academia, industry (vendors), users
I rather than choose one of the existing libraries, “big tent”

I 1994: MPI: A Message Passing Interface Standard (v1.0)
I defines an interface

I types
I constants
I functions

I versions 1.1, 1.2, 1.3, 2.0, 2.1, 2.2, 3.0, 3.1
I MPI 3.1 approved on June 4, 2015

I http://www.mpi-forum.org
I 868 pages

S.F. Siegel � CISC 372: Parallel Computing � MPI Intro 4

http://www.mpi-forum.org


Message Passing Interface: Brief History

I late 1980s
I every vendor had their own message-passing library

I April 1992
I workshop led to working group on a message-passing standard
I involved academia, industry (vendors), users
I rather than choose one of the existing libraries, “big tent”

I 1994: MPI: A Message Passing Interface Standard (v1.0)
I defines an interface

I types
I constants
I functions

I versions 1.1, 1.2, 1.3, 2.0, 2.1, 2.2, 3.0, 3.1
I MPI 3.1 approved on June 4, 2015

I http://www.mpi-forum.org
I 868 pages

S.F. Siegel � CISC 372: Parallel Computing � MPI Intro 4

http://www.mpi-forum.org


Message Passing Interface: Brief History

I late 1980s
I every vendor had their own message-passing library

I April 1992
I workshop led to working group on a message-passing standard
I involved academia, industry (vendors), users
I rather than choose one of the existing libraries, “big tent”

I 1994: MPI: A Message Passing Interface Standard (v1.0)
I defines an interface

I types
I constants
I functions

I versions 1.1, 1.2, 1.3, 2.0, 2.1, 2.2, 3.0, 3.1
I MPI 3.1 approved on June 4, 2015

I http://www.mpi-forum.org
I 868 pages

S.F. Siegel � CISC 372: Parallel Computing � MPI Intro 4

http://www.mpi-forum.org


MPI Program Model

I an MPI program consists of multiple processes

I each process has its own memory (no shared memory)

I think of each process as a program running on its own computer

I the computers can have different architectures
I the programs do not even have to be written in the same language

I MPI officially supports C and Fortran

I however, in most cases:
I programmer writes one generic program
I compiles this
I at run-time, specifies number of processes
I run-time system

I instantiates that number of processes
I distributes them where they need to go

I a process can obtain its unique ID (“rank”)
I by branching on rank, each process can execute different code
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Communicators and Rank

I a communicator is an MPI abstraction representing a set of processes
I type: MPI_Comm

I processes belonging to a communicator are numbered 0, 1, . . . n − 1

I n is the size of the communicator

I rank: the number of the process within the communicator
I MPI_COMM_WORLD: constant of type MPI_Comm

I pre-defined communicator
I comprises all processes that exist at start up

I MPI_Comm_size(MPI_Comm comm, int *size)
I stores size of comm in size
I returns an error code (0=success)

I MPI_Comm_rank(MPI_Comm comm, int *rank)
I stores rank of calling process in rank
I returns an error code (0=success)
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Startup and Shutdown

I MPI_Init(&argc, &argv)
I each process must call this before calling any other MPI functions
I must be called before reading argc or argv
I MPI_Init(NULL, NULL)

I can be used if command line arguments not needed

I MPI_Finalize()
I must be called before process exits
I no MPI functions can be called after this is called
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Hello, world

#include<stdio.h>

#include<mpi.h>

int main(int argc, char *argv[]) {

int rank;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello from process %d.\n", rank);

fflush(stdout);

MPI_Finalize();

}
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Compiling and Executing

I depends somewhat on the MPI implementation

I standard compilation approach
I mpicc [options] -o foo foo.c
I just like cc
I results in binary file foo

I standard execution approach
I mpiexec -n numProcs ./foo

I on Grendel, Bridges, and other large machines shared by many people:
I slightly different approach
I cross-compilation is an option
I queueing system: SLURM

I srun, sbatch, squeue, scancel, . . .
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Using the parallel computer Beowulf in CISC 372

I grendel.cis.udel.edu is a virtual machine (VM)
I it is not the parallel machine

I it is used as the interface to the parallel machine Beowulf

I you cannot log on to Beowulf directly
I use Grendel (the VM) to edit, compile, and for other “light” programming tasks

I or develop/debug on your own machine then use svn to move your work to Grendel

I execute from the VM using SLURM
I example: srun -n 10 ./myexecutable
I this queues and runs your job on the parallel machine
I this is the only way you will see performance
I do not do “big” runs on the VM
I do not use mpiexec on the VM
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Example: Boolean Satisfiability

I SAT: The Boolean Satisfiability Problem

I given
I boolean variables x1, . . . , xn
I a boolean formula φ in the x1, . . . , xn

I φ may use ∧ (and), ∨ (or), and ¬ (not)

I determine whether φ is satisfiable
I does there exist a solution?

I assignments of true/false to the xi that lead φ to evaluate to true

I additionally: if φ is satisfiable, find a/all solution(s)

I example
I variables x1, x2, x3
I φ = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1
I φ is satisfiable
I x1 = false, x2 = false, x3 arbitrary

I example of an unsatisfiable formula: x1 ∧ ¬x1
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SAT

I numerous applications
I cryptography
I circuit design: are two digital circuits equivalent?
I automatic test generation for software or hardware
I model checking: automatic verification of programs
I artificial intelligence: planning, . . .

I asymptotic complexity?
I all known algorithms have exponential worst-case time complexity in n
I it is not known whether you can do better than exponential
I it is possible a polynomial-time algorithm exists!
I SAT is an example of a problem in NP: nondeterministic polynomial time
I it is unknown whether P=NP — the big unsolved problem in computer science
I if SAT is in P, then P=NP

I many effective SAT solvers exist
I can solve problems with millions of variables, clauses
I widely-used in many applications
I active research area with numerous journals, conferences, competitions
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A simple brute-force SAT solver

I iterate over all 2n assignments to the n boolean variables
I for each, plug into φ and evaluate

I example formula in C:

(v[0] || v[1])

&& (!v[1] || !v[3]) && (v[2] || v[3])

&& (!v[3] || !v[4]) && (v[4] || !v[5])

&& (v[5] || !v[6]) && (v[5] || v[6])

&& (v[6] || !v[15]) && (v[7] || !v[8])

&& (!v[7] || !v[13]) && (v[8] || v[9])

&& (v[8] || !v[9]) && (!v[9] || !v[10])

&& (v[9] || v[11]) && (v[10] || v[11])

&& (v[12] || v[13]) && (v[13] || !v[14])

&& (v[14] || v[15])
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Brute force SAT solver: example
a b c (¬a) ∧ (b ∨ ¬c)

0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 1
4 1 0 0 0
5 1 0 1 0
6 1 1 0 0
7 1 1 1 0

I iterate over integers and extract the base-2 representation of each

I see sat.c
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The Core Principles of Parallel Computing

Every algorithm applies some operations to some data.

To parallelize the algorithm, you must:

1. divide up the data, and

2. divide up the operations.

Two Goals:
I locality: most operations performed by process P require only the data assigned to P

I minimize communication!

I load balance: the work is distributed equally among the processes
I a parallel program is only as fast as the longest-running process
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Parallelizing SAT solver
a b c (¬a) ∧ (b ∨ ¬c)

0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 1
4 1 0 0 0
5 1 0 1 0
6 1 1 0 0
7 1 1 1 0

I each row is a piece of work — divide these up equally
I locality?

I each proc operates on its own data; no communication necessary — “embarrassingly parallel”

I load balance?
I possible issue: some cases can be solved faster than others (“short circuit” nature of and, or)
I in the example, last 4 cases are quick
I note these quick cases tend to be “clumped” together
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Dividing up the work

Suppose we have two procs. How to divide up the work between them?

1. Method 1 (block distribution)
I Proc 0: rows 0,1,2,3
I Proc 1: rows 4,5,6,7

I Problem: Proc 1 finishes quickly, then has nothing to do.
I program is only as fast as the slowest process

2. Method 2 (cyclic distribution)
I Proc 0: rows 0,2,4,6
I Proc 1: rows 1,3,5,7

I Probably closer to equal division of work

Load Balancing
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Cyclic Distribution

Generalize
Given any number of tasks.
Given p processes.
Distribute the tasks cyclically:

I proc 0: 0, p, 2p, . . .

I proc 1: 1, p + 1, 2p + 1, . . .

I proc 2: 2, p + 2, 2p + 2, . . .

I etc.

I.e., proc i gets tasks t, where t%p = i .
See sat1.c, Makefile.
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Adding things up

I now we want to print the total number of solutions found

I each process can count its solutions

I then we need to add up these numbers across all processes

I this obviously requires communication
I an example of a collective operation

I a communication operation involving all processes in a communicator

I to carry out a collective operation in MPI:
I each process calls the same function
I some arguments will be the same for all processes
I some will differ

I the collective function MPI_Reduce can be used to
I add vectors across all processes
I store the resulting vector in the memory of one process
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MPI_Reduce

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm)

sendbuf address of send buffer (void*)
recvbuf address of recv buffer (void*)
count number of elements in send buffer (int)

datatype data type of elements in send buffer (MPI_Datatype)
op reduce operation (MPI_Op)

root rank of root process (int)
comm communicator (MPI_Comm)

Rank 0 sendbuf x00 x01 x02
Rank 1 sendbuf x10 x11 x12
Rank 2 sendbuf x20 x21 x22

Root recvbuf x00 + x10 + x20 x01 + x11 + x21 x02 + x12 + x22
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MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm)

I all processes in the communicator must call it

I all pass same value for root, comm, op

I in most cases, all pass same values for count, datatype
I there is no requirement on the pointer values

I each lives in a “different world” (no shared memory)

I the recvbuf argument is only used on the root process
I all other processes ignore this argument

I if you break any of the rules
I anything could happen
I you might get an error message
I your program might run and just return erroneous results
I you might get a deadlock
I you might get a crash with an indecipherable error message
I the MPI Standard does not specify
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Reduction Operations

Predefined reduction operations:

MPI_Op binary operation C operation

MPI_SUM addition +

MPI_PROD multiplication *

MPI_MAX maximum x>=y ? x : y

MPI_MIN minimum x<y ? x : y

MPI_LAND logical and &&

MPI_LOR logical or ||

MPI_LXOR logical exclusive or
MPI_BAND bit-wise and &

MPI_BOR bit-wise or |

MPI_BXOR bit-wise exclusive or ^

Can also make user-defined reduction operations.
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Datatypes

Some common MPI datatypes:

MPI_Datatype C type

MPI_INT int

MPI_FLOAT float

MPI_DOUBLE double

MPI_CHAR char

MPI_UNSIGNED_CHAR unsigned char

I See MPI Standard 3.1, Section 3.2.2, “Message Data”, Table 3.2
I “Predefined MPI datatypes corresponding to C datatypes”

I food for thought
I why did MPI Forum re-invent the data structure wheel?

I now examine sat2.c
I see how MPI_Reduce is used
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Creating global synchronization points: MPI_Barrier

MPI_Barrier(comm)

comm communicator (MPI_Comm)

I another collective operation

I blocks calling process until all processes in comm call MPI_Barrier
I “no one can leave until everyone enters”

I the motto of the barrier

I if one process in comm calls MPI_Barrier(comm), all should
I else deadlock ensues

I example: all procs say “hello”, barrier, then “goodbye”
I example: write a “hello, world” program, but:

I messages are printed in order of increasing rank
I solution: loop with barrier
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Keeping track of time: MPI_Wtime()

Stands for wall time. From MPI Standard 2.2:

MPI defines a timer. A timer is specified even though it is not “message-passing,” because
timing parallel programs is important in “performance debugging” and because existing timers
(both in POSIX 1003.1-1988 and 1003.4D 14.1 and in Fortran 90) are either inconvenient or
do not provide adequate access to high-resolution timers.

I returns a floating-point number
I the number of seconds elapsed since some fixed time in the past
I “time in the past” is not specified, but is fixed for the life of the process
I e.g.: midnight on Jan. 1, 1970

I typical usage
I t0 = MPI_Wtime();
I do some computation
I t1 = MPI_Wtime();
I it took t1-t0 seconds to do the computation
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MPI_Wtime, cont.

Issue:
I when is a task that involves multiple processes completed?

I when the first process finishes? the average process?
I when the last process finishes

I you cannot time just one process

Solution (see sat3.c):

1. isolate the region of code you want to time (e.g.: you might want to exclude I/O)

2. MPI_Barrier(comm);

3. t0 = MPI_Wtime();

4. do some computation

5. MPI_Barrier(comm);

6. t1 = MPI_Wtime();

7. elapsed time is t1-t0
I result should be roughly the same on every process
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