
CISC 372: Parallel Computing

Performance

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

September 14, 2020



Performance: definition

I how efficiently resources are used to solve a problem
I resources?

I memory
I energy
I time

S.F. Siegel � CISC 372: Parallel Computing � Performance 2



Performance: definition

I how efficiently resources are used to solve a problem

I resources?
I memory
I energy
I time

S.F. Siegel � CISC 372: Parallel Computing � Performance 2



Performance: definition

I how efficiently resources are used to solve a problem
I resources?

I memory
I energy
I time

S.F. Siegel � CISC 372: Parallel Computing � Performance 2



Factors that affect performance: effective use of memory hierarchy

I modern CPUs have a hierarchy of data caches between CPU and memory

I L1 cache: closest to core, very fast connection to registers (typical size: 32 KB/core)
I L2 cache: further than L1, bigger, slower (256 KB/core)
I L3 cache: further than L2, bigger, slower (2 MB/core)
I DRAM: very slow

S.F. Siegel � CISC 372: Parallel Computing � Performance 3



Factors that affect performance: effective use of memory hierarchy

I modern CPUs have a hierarchy of data caches between CPU and memory
I L1 cache: closest to core, very fast connection to registers (typical size: 32 KB/core)

I L2 cache: further than L1, bigger, slower (256 KB/core)
I L3 cache: further than L2, bigger, slower (2 MB/core)
I DRAM: very slow

S.F. Siegel � CISC 372: Parallel Computing � Performance 3



Factors that affect performance: effective use of memory hierarchy

I modern CPUs have a hierarchy of data caches between CPU and memory
I L1 cache: closest to core, very fast connection to registers (typical size: 32 KB/core)
I L2 cache: further than L1, bigger, slower (256 KB/core)

I L3 cache: further than L2, bigger, slower (2 MB/core)
I DRAM: very slow

S.F. Siegel � CISC 372: Parallel Computing � Performance 3



Factors that affect performance: effective use of memory hierarchy

I modern CPUs have a hierarchy of data caches between CPU and memory
I L1 cache: closest to core, very fast connection to registers (typical size: 32 KB/core)
I L2 cache: further than L1, bigger, slower (256 KB/core)
I L3 cache: further than L2, bigger, slower (2 MB/core)

I DRAM: very slow

S.F. Siegel � CISC 372: Parallel Computing � Performance 3



Factors that affect performance: effective use of memory hierarchy

I modern CPUs have a hierarchy of data caches between CPU and memory
I L1 cache: closest to core, very fast connection to registers (typical size: 32 KB/core)
I L2 cache: further than L1, bigger, slower (256 KB/core)
I L3 cache: further than L2, bigger, slower (2 MB/core)
I DRAM: very slow

S.F. Siegel � CISC 372: Parallel Computing � Performance 3



Factors that affect performance: effective use of memory hierarchy

I modern CPUs have a hierarchy of data caches between CPU and memory
I L1 cache: closest to core, very fast connection to registers (typical size: 32 KB/core)
I L2 cache: further than L1, bigger, slower (256 KB/core)
I L3 cache: further than L2, bigger, slower (2 MB/core)
I DRAM: very slow

S.F. Siegel � CISC 372: Parallel Computing � Performance 3



Memory hierarchy: AMD Bulldozer server

https://en.wikipedia.org/wiki/CPU_cache

S.F. Siegel � CISC 372: Parallel Computing � Performance 4

https://en.wikipedia.org/wiki/CPU_cache


Memory hierarchy: example: matrix-vector multiplication


a00 a01 a02
a10 a11 a12
a20 a21 a22
a30 a31 a32

×
x0x1
x2

 =


a00x0 + a01x1 + a02x2
a10x0 + a11x1 + a12x2
a20x0 + a21x1 + a22x2
a30x0 + a31x1 + a32x2



Layout of a in memory:

a00 a01 a02 a10 a11 a12 a20 a21 a22 a30 a31 a32

S.F. Siegel � CISC 372: Parallel Computing � Performance 5



Memory hierarchy: example: matrix-vector multiplication


a00 a01 a02
a10 a11 a12
a20 a21 a22
a30 a31 a32

×
x0x1
x2

 =


a00x0 + a01x1 + a02x2
a10x0 + a11x1 + a12x2
a20x0 + a21x1 + a22x2
a30x0 + a31x1 + a32x2


Layout of a in memory:

a00 a01 a02 a10 a11 a12 a20 a21 a22 a30 a31 a32

S.F. Siegel � CISC 372: Parallel Computing � Performance 5



Memory hierarchy: example: matrix-vector multiplication


a00 a01 a02
a10 a11 a12
a20 a21 a22
a30 a31 a32

×
x0x1
x2

 =


a00x0 + a01x1 + a02x2
a10x0 + a11x1 + a12x2
a20x0 + a21x1 + a22x2
a30x0 + a31x1 + a32x2


Layout of a in memory:

a00 a01 a02 a10 a11 a12 a20 a21 a22 a30 a31 a32

I see colmaj.c: a is N × N array of doubles, N = 20, 000

I consider accesses to a
I a[0][0], a[1][0], a[2][0], . . .
I these are separated by 20, 000 ∗ sizeof(double) bytes!
I each access loads into cache an entire block (cache line) containing the requested location

S.F. Siegel � CISC 372: Parallel Computing � Performance 5



Memory hierarchy: example: matrix-vector multiplication


a00 a01 a02
a10 a11 a12
a20 a21 a22
a30 a31 a32

×
x0x1
x2

 =


a00x0 + a01x1 + a02x2
a10x0 + a11x1 + a12x2
a20x0 + a21x1 + a22x2
a30x0 + a31x1 + a32x2


Layout of a in memory:

a00 a01 a02 a10 a11 a12 a20 a21 a22 a30 a31 a32

I see colmaj.c: a is N × N array of doubles, N = 20, 000
I consider accesses to a
I a[0][0], a[1][0], a[2][0], . . .
I these are separated by 20, 000 ∗ sizeof(double) bytes!
I each access loads into cache an entire block (cache line) containing the requested location

S.F. Siegel � CISC 372: Parallel Computing � Performance 5



Memory hierarchy: example: matrix-vector multiplication


a00 a01 a02
a10 a11 a12
a20 a21 a22
a30 a31 a32

×
x0x1
x2

 =


a00x0 + a01x1 + a02x2
a10x0 + a11x1 + a12x2
a20x0 + a21x1 + a22x2
a30x0 + a31x1 + a32x2


Layout of a in memory:

a00 a01 a02 a10 a11 a12 a20 a21 a22 a30 a31 a32

I see rowmaj.c

S.F. Siegel � CISC 372: Parallel Computing � Performance 5



Memory hierarchy: example: matrix-vector multiplication


a00 a01 a02
a10 a11 a12
a20 a21 a22
a30 a31 a32

×
x0x1
x2

 =


a00x0 + a01x1 + a02x2
a10x0 + a11x1 + a12x2
a20x0 + a21x1 + a22x2
a30x0 + a31x1 + a32x2


Layout of a in memory:

a00 a01 a02 a10 a11 a12 a20 a21 a22 a30 a31 a32

I see rowmaj.c
I functionally equivalent to colmaj.c
I a[0][0], a[0][1], a[0][2], . . .
I these are adjacent in memory
I the first access loads the cache line containing many/all of the subsequent elements

S.F. Siegel � CISC 372: Parallel Computing � Performance 5



Factors that affect performance: compiler optimizations

Compilers can transform programs in myriad ways to use resources more effectively. . .

I function inlining; loop fission, loop fusion; loop interchange; loop unrolling; common
subexpression elimination; constant folding, propagation . . .

Tradeoffs: more optimization generally entails. . .

I longer compile time

I larger generated code size

I program gets harder to debug

I greater sensitivity to undefined behavior (but you shouldn’t use any undefined behavior!)

I generated code might actually get slower

Most compilers present a few pre-packaged optimization levels:

I -O0: little optimization, the default; -Og: recommended for debugging

I -O1, -O2, -O3: increasingly more optimizations applied

I see https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

S.F. Siegel � CISC 372: Parallel Computing � Performance 6

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Factors that affect performance: compiler optimizations

Compilers can transform programs in myriad ways to use resources more effectively. . .

I function inlining; loop fission, loop fusion; loop interchange; loop unrolling; common
subexpression elimination; constant folding, propagation . . .

Tradeoffs: more optimization generally entails. . .

I longer compile time

I larger generated code size

I program gets harder to debug

I greater sensitivity to undefined behavior (but you shouldn’t use any undefined behavior!)

I generated code might actually get slower

Most compilers present a few pre-packaged optimization levels:

I -O0: little optimization, the default; -Og: recommended for debugging

I -O1, -O2, -O3: increasingly more optimizations applied

I see https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

S.F. Siegel � CISC 372: Parallel Computing � Performance 6

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Factors that affect performance: compiler optimizations

Compilers can transform programs in myriad ways to use resources more effectively. . .

I function inlining; loop fission, loop fusion; loop interchange; loop unrolling; common
subexpression elimination; constant folding, propagation . . .

Tradeoffs: more optimization generally entails. . .

I longer compile time

I larger generated code size

I program gets harder to debug

I greater sensitivity to undefined behavior (but you shouldn’t use any undefined behavior!)

I generated code might actually get slower

Most compilers present a few pre-packaged optimization levels:

I -O0: little optimization, the default; -Og: recommended for debugging

I -O1, -O2, -O3: increasingly more optimizations applied

I see https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

S.F. Siegel � CISC 372: Parallel Computing � Performance 6

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Factors that affect performance: compiler optimizations

Compilers can transform programs in myriad ways to use resources more effectively. . .

I function inlining; loop fission, loop fusion; loop interchange; loop unrolling; common
subexpression elimination; constant folding, propagation . . .

Tradeoffs: more optimization generally entails. . .

I longer compile time

I larger generated code size

I program gets harder to debug

I greater sensitivity to undefined behavior (but you shouldn’t use any undefined behavior!)

I generated code might actually get slower

Most compilers present a few pre-packaged optimization levels:

I -O0: little optimization, the default; -Og: recommended for debugging

I -O1, -O2, -O3: increasingly more optimizations applied

I see https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

S.F. Siegel � CISC 372: Parallel Computing � Performance 6

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Factors that affect performance: compiler optimizations

Compilers can transform programs in myriad ways to use resources more effectively. . .

I function inlining; loop fission, loop fusion; loop interchange; loop unrolling; common
subexpression elimination; constant folding, propagation . . .

Tradeoffs: more optimization generally entails. . .

I longer compile time

I larger generated code size

I program gets harder to debug

I greater sensitivity to undefined behavior (but you shouldn’t use any undefined behavior!)

I generated code might actually get slower

Most compilers present a few pre-packaged optimization levels:

I -O0: little optimization, the default; -Og: recommended for debugging

I -O1, -O2, -O3: increasingly more optimizations applied

I see https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

S.F. Siegel � CISC 372: Parallel Computing � Performance 6

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Factors that affect performance: compiler optimizations

Compilers can transform programs in myriad ways to use resources more effectively. . .

I function inlining; loop fission, loop fusion; loop interchange; loop unrolling; common
subexpression elimination; constant folding, propagation . . .

Tradeoffs: more optimization generally entails. . .

I longer compile time

I larger generated code size

I program gets harder to debug

I greater sensitivity to undefined behavior (but you shouldn’t use any undefined behavior!)

I generated code might actually get slower

Most compilers present a few pre-packaged optimization levels:

I -O0: little optimization, the default; -Og: recommended for debugging

I -O1, -O2, -O3: increasingly more optimizations applied

I see https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

S.F. Siegel � CISC 372: Parallel Computing � Performance 6

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Factors that affect performance: compiler optimizations

Compilers can transform programs in myriad ways to use resources more effectively. . .

I function inlining; loop fission, loop fusion; loop interchange; loop unrolling; common
subexpression elimination; constant folding, propagation . . .

Tradeoffs: more optimization generally entails. . .

I longer compile time

I larger generated code size

I program gets harder to debug

I greater sensitivity to undefined behavior (but you shouldn’t use any undefined behavior!)

I generated code might actually get slower

Most compilers present a few pre-packaged optimization levels:

I -O0: little optimization, the default; -Og: recommended for debugging

I -O1, -O2, -O3: increasingly more optimizations applied

I see https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

S.F. Siegel � CISC 372: Parallel Computing � Performance 6

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Factors that affect performance: compiler optimizations

Compilers can transform programs in myriad ways to use resources more effectively. . .

I function inlining; loop fission, loop fusion; loop interchange; loop unrolling; common
subexpression elimination; constant folding, propagation . . .

Tradeoffs: more optimization generally entails. . .

I longer compile time

I larger generated code size

I program gets harder to debug

I greater sensitivity to undefined behavior (but you shouldn’t use any undefined behavior!)

I generated code might actually get slower

Most compilers present a few pre-packaged optimization levels:

I -O0: little optimization, the default; -Og: recommended for debugging

I -O1, -O2, -O3: increasingly more optimizations applied

I see https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

S.F. Siegel � CISC 372: Parallel Computing � Performance 6

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Factors that affect performance: compiler optimizations

Compilers can transform programs in myriad ways to use resources more effectively. . .

I function inlining; loop fission, loop fusion; loop interchange; loop unrolling; common
subexpression elimination; constant folding, propagation . . .

Tradeoffs: more optimization generally entails. . .

I longer compile time

I larger generated code size

I program gets harder to debug

I greater sensitivity to undefined behavior (but you shouldn’t use any undefined behavior!)

I generated code might actually get slower

Most compilers present a few pre-packaged optimization levels:

I -O0: little optimization, the default; -Og: recommended for debugging

I -O1, -O2, -O3: increasingly more optimizations applied

I see https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

S.F. Siegel � CISC 372: Parallel Computing � Performance 6

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Factors that affect performance: compiler optimizations

Compilers can transform programs in myriad ways to use resources more effectively. . .

I function inlining; loop fission, loop fusion; loop interchange; loop unrolling; common
subexpression elimination; constant folding, propagation . . .

Tradeoffs: more optimization generally entails. . .

I longer compile time

I larger generated code size

I program gets harder to debug

I greater sensitivity to undefined behavior (but you shouldn’t use any undefined behavior!)

I generated code might actually get slower

Most compilers present a few pre-packaged optimization levels:

I -O0: little optimization, the default; -Og: recommended for debugging

I -O1, -O2, -O3: increasingly more optimizations applied

I see https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
S.F. Siegel � CISC 372: Parallel Computing � Performance 6

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Measuring performance of a parallel program

I to measure performance of a parallel program, you need a baseline

I baseline: a “similar” sequential program
I using same inputs and other parameters to the extent possible

I different notions of similar are possible
I do you choose the best possible sequential algorithm that solves the problem?
I or the parallel program with -n 1 (one process)?
I these are often very different!
I you must always specify the baseline

S.F. Siegel � CISC 372: Parallel Computing � Performance 7



Measuring performance of a parallel program

I to measure performance of a parallel program, you need a baseline
I baseline: a “similar” sequential program

I using same inputs and other parameters to the extent possible

I different notions of similar are possible
I do you choose the best possible sequential algorithm that solves the problem?
I or the parallel program with -n 1 (one process)?
I these are often very different!
I you must always specify the baseline

S.F. Siegel � CISC 372: Parallel Computing � Performance 7



Measuring performance of a parallel program

I to measure performance of a parallel program, you need a baseline
I baseline: a “similar” sequential program

I using same inputs and other parameters to the extent possible

I different notions of similar are possible

I do you choose the best possible sequential algorithm that solves the problem?
I or the parallel program with -n 1 (one process)?
I these are often very different!
I you must always specify the baseline

S.F. Siegel � CISC 372: Parallel Computing � Performance 7



Measuring performance of a parallel program

I to measure performance of a parallel program, you need a baseline
I baseline: a “similar” sequential program

I using same inputs and other parameters to the extent possible

I different notions of similar are possible
I do you choose the best possible sequential algorithm that solves the problem?
I or the parallel program with -n 1 (one process)?

I these are often very different!
I you must always specify the baseline

S.F. Siegel � CISC 372: Parallel Computing � Performance 7



Measuring performance of a parallel program

I to measure performance of a parallel program, you need a baseline
I baseline: a “similar” sequential program

I using same inputs and other parameters to the extent possible

I different notions of similar are possible
I do you choose the best possible sequential algorithm that solves the problem?
I or the parallel program with -n 1 (one process)?
I these are often very different!
I you must always specify the baseline

S.F. Siegel � CISC 372: Parallel Computing � Performance 7



Speedup

Let

Tseq = time to run sequential baseline

Tpar = time to run parallel parallel program

Then

Speedup =
Tseq

Tpar

I higher speedup is better
I if seq took 10 seconds and par took 2 seconds, speedup is 5

I “parallel program is 5x faster than sequential”
I with those particular inputs and nprocs

S.F. Siegel � CISC 372: Parallel Computing � Performance 8



Speedup

Let

Tseq = time to run sequential baseline

Tpar = time to run parallel parallel program

Then

Speedup =
Tseq

Tpar

I higher speedup is better
I if seq took 10 seconds and par took 2 seconds, speedup is 5

I “parallel program is 5x faster than sequential”
I with those particular inputs and nprocs

S.F. Siegel � CISC 372: Parallel Computing � Performance 8



Speedup

Let

Tseq = time to run sequential baseline

Tpar = time to run parallel parallel program

Then

Speedup =
Tseq

Tpar

I higher speedup is better
I if seq took 10 seconds and par took 2 seconds, speedup is 5

I “parallel program is 5x faster than sequential”
I with those particular inputs and nprocs

S.F. Siegel � CISC 372: Parallel Computing � Performance 8



Speedup

Let

Tseq = time to run sequential baseline

Tpar = time to run parallel parallel program

Then

Speedup =
Tseq

Tpar

I higher speedup is better

I if seq took 10 seconds and par took 2 seconds, speedup is 5
I “parallel program is 5x faster than sequential”
I with those particular inputs and nprocs

S.F. Siegel � CISC 372: Parallel Computing � Performance 8



Speedup

Let

Tseq = time to run sequential baseline

Tpar = time to run parallel parallel program

Then

Speedup =
Tseq

Tpar

I higher speedup is better
I if seq took 10 seconds and par took 2 seconds, speedup is 5

I “parallel program is 5x faster than sequential”
I with those particular inputs and nprocs

S.F. Siegel � CISC 372: Parallel Computing � Performance 8



Speedup as a function of nprocs

I hopefully: speedup will change (increase!) with nprocs

I ideal case: speedup = nprocs
I double the number of procs, cut the execution time in half

I reality: rarely that good
I communication time (sending messages)
I synchronization time (procs have to sit around waiting, e.g., at a Barrier)
I redundant work (two procs compute the same thing)

I after some point adding more processes no longer increases speedup
I sort a list of 1012 elements

I doubtful you can improve speedup when nprocs > 1012

I this is always the case for fixed problem size

I in best case, speedup may be approximatley linear over some range of nprocs, but never as
nprocs→∞

S.F. Siegel � CISC 372: Parallel Computing � Performance 9



Speedup as a function of nprocs

I hopefully: speedup will change (increase!) with nprocs

I ideal case: speedup = nprocs
I double the number of procs, cut the execution time in half

I reality: rarely that good
I communication time (sending messages)
I synchronization time (procs have to sit around waiting, e.g., at a Barrier)
I redundant work (two procs compute the same thing)

I after some point adding more processes no longer increases speedup
I sort a list of 1012 elements

I doubtful you can improve speedup when nprocs > 1012

I this is always the case for fixed problem size

I in best case, speedup may be approximatley linear over some range of nprocs, but never as
nprocs→∞

S.F. Siegel � CISC 372: Parallel Computing � Performance 9



Speedup as a function of nprocs

I hopefully: speedup will change (increase!) with nprocs

I ideal case: speedup = nprocs
I double the number of procs, cut the execution time in half

I reality: rarely that good
I communication time (sending messages)
I synchronization time (procs have to sit around waiting, e.g., at a Barrier)
I redundant work (two procs compute the same thing)

I after some point adding more processes no longer increases speedup
I sort a list of 1012 elements

I doubtful you can improve speedup when nprocs > 1012

I this is always the case for fixed problem size

I in best case, speedup may be approximatley linear over some range of nprocs, but never as
nprocs→∞

S.F. Siegel � CISC 372: Parallel Computing � Performance 9



Speedup as a function of nprocs

I hopefully: speedup will change (increase!) with nprocs

I ideal case: speedup = nprocs
I double the number of procs, cut the execution time in half

I reality: rarely that good
I communication time (sending messages)
I synchronization time (procs have to sit around waiting, e.g., at a Barrier)
I redundant work (two procs compute the same thing)

I after some point adding more processes no longer increases speedup
I sort a list of 1012 elements

I doubtful you can improve speedup when nprocs > 1012

I this is always the case for fixed problem size

I in best case, speedup may be approximatley linear over some range of nprocs, but never as
nprocs→∞

S.F. Siegel � CISC 372: Parallel Computing � Performance 9



Speedup as a function of nprocs

I hopefully: speedup will change (increase!) with nprocs

I ideal case: speedup = nprocs
I double the number of procs, cut the execution time in half

I reality: rarely that good
I communication time (sending messages)
I synchronization time (procs have to sit around waiting, e.g., at a Barrier)
I redundant work (two procs compute the same thing)

I after some point adding more processes no longer increases speedup

I sort a list of 1012 elements
I doubtful you can improve speedup when nprocs > 1012

I this is always the case for fixed problem size

I in best case, speedup may be approximatley linear over some range of nprocs, but never as
nprocs→∞

S.F. Siegel � CISC 372: Parallel Computing � Performance 9



Speedup as a function of nprocs

I hopefully: speedup will change (increase!) with nprocs

I ideal case: speedup = nprocs
I double the number of procs, cut the execution time in half

I reality: rarely that good
I communication time (sending messages)
I synchronization time (procs have to sit around waiting, e.g., at a Barrier)
I redundant work (two procs compute the same thing)

I after some point adding more processes no longer increases speedup
I sort a list of 1012 elements

I doubtful you can improve speedup when nprocs > 1012

I this is always the case for fixed problem size

I in best case, speedup may be approximatley linear over some range of nprocs, but never as
nprocs→∞

S.F. Siegel � CISC 372: Parallel Computing � Performance 9



Speedup as a function of nprocs

I hopefully: speedup will change (increase!) with nprocs

I ideal case: speedup = nprocs
I double the number of procs, cut the execution time in half

I reality: rarely that good
I communication time (sending messages)
I synchronization time (procs have to sit around waiting, e.g., at a Barrier)
I redundant work (two procs compute the same thing)

I after some point adding more processes no longer increases speedup
I sort a list of 1012 elements

I doubtful you can improve speedup when nprocs > 1012

I this is always the case for fixed problem size

I in best case, speedup may be approximatley linear over some range of nprocs, but never as
nprocs→∞

S.F. Siegel � CISC 372: Parallel Computing � Performance 9



Speedup as a function of nprocs

I hopefully: speedup will change (increase!) with nprocs

I ideal case: speedup = nprocs
I double the number of procs, cut the execution time in half

I reality: rarely that good
I communication time (sending messages)
I synchronization time (procs have to sit around waiting, e.g., at a Barrier)
I redundant work (two procs compute the same thing)

I after some point adding more processes no longer increases speedup
I sort a list of 1012 elements

I doubtful you can improve speedup when nprocs > 1012

I this is always the case for fixed problem size

I in best case, speedup may be approximatley linear over some range of nprocs, but never as
nprocs→∞

S.F. Siegel � CISC 372: Parallel Computing � Performance 9



Speedup as a function of nprocs

I hopefully: speedup will change (increase!) with nprocs

I ideal case: speedup = nprocs
I double the number of procs, cut the execution time in half

I reality: rarely that good
I communication time (sending messages)
I synchronization time (procs have to sit around waiting, e.g., at a Barrier)
I redundant work (two procs compute the same thing)

I after some point adding more processes no longer increases speedup
I sort a list of 1012 elements

I doubtful you can improve speedup when nprocs > 1012

I this is always the case for fixed problem size

I in best case, speedup may be approximatley linear over some range of nprocs, but never as
nprocs→∞

S.F. Siegel � CISC 372: Parallel Computing � Performance 9



Amdahl’s Law

I typically some part of the code cannot be parallelized

I “inherently sequential”
I example: diffuse1d writes data to the screen

I there is only one screen: no way to parallelize that part

I example
I say in sequential program, 10% of time is spent doing “inherently sequential” work
I the other 90% can be parallelized
I even if a parallel program were PERFECT with unlimited resources, the best it could do is

reduce the 90% to 0.
I the 10% time would be unchanged
I therefore the best possible parallel time is (1/10) ∗ Tseq

I best possible speedup is 10 :-(

I in general, if inherently sequential fraction of original program is r
I then speedup < 1/r

S.F. Siegel � CISC 372: Parallel Computing � Performance 10



Amdahl’s Law

I typically some part of the code cannot be parallelized

I “inherently sequential”

I example: diffuse1d writes data to the screen
I there is only one screen: no way to parallelize that part

I example
I say in sequential program, 10% of time is spent doing “inherently sequential” work
I the other 90% can be parallelized
I even if a parallel program were PERFECT with unlimited resources, the best it could do is

reduce the 90% to 0.
I the 10% time would be unchanged
I therefore the best possible parallel time is (1/10) ∗ Tseq

I best possible speedup is 10 :-(

I in general, if inherently sequential fraction of original program is r
I then speedup < 1/r

S.F. Siegel � CISC 372: Parallel Computing � Performance 10



Amdahl’s Law

I typically some part of the code cannot be parallelized

I “inherently sequential”
I example: diffuse1d writes data to the screen

I there is only one screen: no way to parallelize that part

I example
I say in sequential program, 10% of time is spent doing “inherently sequential” work
I the other 90% can be parallelized
I even if a parallel program were PERFECT with unlimited resources, the best it could do is

reduce the 90% to 0.
I the 10% time would be unchanged
I therefore the best possible parallel time is (1/10) ∗ Tseq

I best possible speedup is 10 :-(

I in general, if inherently sequential fraction of original program is r
I then speedup < 1/r

S.F. Siegel � CISC 372: Parallel Computing � Performance 10



Amdahl’s Law

I typically some part of the code cannot be parallelized

I “inherently sequential”
I example: diffuse1d writes data to the screen

I there is only one screen: no way to parallelize that part

I example
I say in sequential program, 10% of time is spent doing “inherently sequential” work

I the other 90% can be parallelized
I even if a parallel program were PERFECT with unlimited resources, the best it could do is

reduce the 90% to 0.
I the 10% time would be unchanged
I therefore the best possible parallel time is (1/10) ∗ Tseq

I best possible speedup is 10 :-(

I in general, if inherently sequential fraction of original program is r
I then speedup < 1/r

S.F. Siegel � CISC 372: Parallel Computing � Performance 10



Amdahl’s Law

I typically some part of the code cannot be parallelized

I “inherently sequential”
I example: diffuse1d writes data to the screen

I there is only one screen: no way to parallelize that part

I example
I say in sequential program, 10% of time is spent doing “inherently sequential” work
I the other 90% can be parallelized

I even if a parallel program were PERFECT with unlimited resources, the best it could do is
reduce the 90% to 0.

I the 10% time would be unchanged
I therefore the best possible parallel time is (1/10) ∗ Tseq

I best possible speedup is 10 :-(

I in general, if inherently sequential fraction of original program is r
I then speedup < 1/r

S.F. Siegel � CISC 372: Parallel Computing � Performance 10



Amdahl’s Law

I typically some part of the code cannot be parallelized

I “inherently sequential”
I example: diffuse1d writes data to the screen

I there is only one screen: no way to parallelize that part

I example
I say in sequential program, 10% of time is spent doing “inherently sequential” work
I the other 90% can be parallelized
I even if a parallel program were PERFECT with unlimited resources, the best it could do is

reduce the 90% to 0.

I the 10% time would be unchanged
I therefore the best possible parallel time is (1/10) ∗ Tseq

I best possible speedup is 10 :-(

I in general, if inherently sequential fraction of original program is r
I then speedup < 1/r

S.F. Siegel � CISC 372: Parallel Computing � Performance 10



Amdahl’s Law

I typically some part of the code cannot be parallelized

I “inherently sequential”
I example: diffuse1d writes data to the screen

I there is only one screen: no way to parallelize that part

I example
I say in sequential program, 10% of time is spent doing “inherently sequential” work
I the other 90% can be parallelized
I even if a parallel program were PERFECT with unlimited resources, the best it could do is

reduce the 90% to 0.
I the 10% time would be unchanged

I therefore the best possible parallel time is (1/10) ∗ Tseq

I best possible speedup is 10 :-(

I in general, if inherently sequential fraction of original program is r
I then speedup < 1/r

S.F. Siegel � CISC 372: Parallel Computing � Performance 10



Amdahl’s Law

I typically some part of the code cannot be parallelized

I “inherently sequential”
I example: diffuse1d writes data to the screen

I there is only one screen: no way to parallelize that part

I example
I say in sequential program, 10% of time is spent doing “inherently sequential” work
I the other 90% can be parallelized
I even if a parallel program were PERFECT with unlimited resources, the best it could do is

reduce the 90% to 0.
I the 10% time would be unchanged
I therefore the best possible parallel time is (1/10) ∗ Tseq

I best possible speedup is 10 :-(

I in general, if inherently sequential fraction of original program is r
I then speedup < 1/r

S.F. Siegel � CISC 372: Parallel Computing � Performance 10



Amdahl’s Law

I typically some part of the code cannot be parallelized

I “inherently sequential”
I example: diffuse1d writes data to the screen

I there is only one screen: no way to parallelize that part

I example
I say in sequential program, 10% of time is spent doing “inherently sequential” work
I the other 90% can be parallelized
I even if a parallel program were PERFECT with unlimited resources, the best it could do is

reduce the 90% to 0.
I the 10% time would be unchanged
I therefore the best possible parallel time is (1/10) ∗ Tseq

I best possible speedup is 10 :-(

I in general, if inherently sequential fraction of original program is r
I then speedup < 1/r

S.F. Siegel � CISC 372: Parallel Computing � Performance 10



Amdahl’s Law

I typically some part of the code cannot be parallelized

I “inherently sequential”
I example: diffuse1d writes data to the screen

I there is only one screen: no way to parallelize that part

I example
I say in sequential program, 10% of time is spent doing “inherently sequential” work
I the other 90% can be parallelized
I even if a parallel program were PERFECT with unlimited resources, the best it could do is

reduce the 90% to 0.
I the 10% time would be unchanged
I therefore the best possible parallel time is (1/10) ∗ Tseq

I best possible speedup is 10 :-(

I in general, if inherently sequential fraction of original program is r
I then speedup < 1/r

S.F. Siegel � CISC 372: Parallel Computing � Performance 10



Weak Scaling vs. Strong Scaling

I Amdahl assumes inputs are held constant as nprocs increases
I “strong scaling”

I Amdahl shows that strong scaling is problematic
I there is always some point after which adding more procs cannot help

I does this really reflect how people use parallel programs?
I Gustafson (1988) said no

I most users do not have some fixed problem size and ask how fast can I make it?
I instead, the more processors you give them, the bigger they will make the problem size
I almost every problem in science and engineering benefits from increased resolution or scale

I so a more useful measure of performance increases problem size with nprocs
I “weak scaling”

I parallelization is more effective with weak scaling than with strong scaling

S.F. Siegel � CISC 372: Parallel Computing � Performance 11



Weak Scaling vs. Strong Scaling

I Amdahl assumes inputs are held constant as nprocs increases
I “strong scaling”

I Amdahl shows that strong scaling is problematic
I there is always some point after which adding more procs cannot help

I does this really reflect how people use parallel programs?
I Gustafson (1988) said no

I most users do not have some fixed problem size and ask how fast can I make it?
I instead, the more processors you give them, the bigger they will make the problem size
I almost every problem in science and engineering benefits from increased resolution or scale

I so a more useful measure of performance increases problem size with nprocs
I “weak scaling”

I parallelization is more effective with weak scaling than with strong scaling

S.F. Siegel � CISC 372: Parallel Computing � Performance 11



Weak Scaling vs. Strong Scaling

I Amdahl assumes inputs are held constant as nprocs increases
I “strong scaling”

I Amdahl shows that strong scaling is problematic
I there is always some point after which adding more procs cannot help

I does this really reflect how people use parallel programs?

I Gustafson (1988) said no
I most users do not have some fixed problem size and ask how fast can I make it?
I instead, the more processors you give them, the bigger they will make the problem size
I almost every problem in science and engineering benefits from increased resolution or scale

I so a more useful measure of performance increases problem size with nprocs
I “weak scaling”

I parallelization is more effective with weak scaling than with strong scaling

S.F. Siegel � CISC 372: Parallel Computing � Performance 11



Weak Scaling vs. Strong Scaling

I Amdahl assumes inputs are held constant as nprocs increases
I “strong scaling”

I Amdahl shows that strong scaling is problematic
I there is always some point after which adding more procs cannot help

I does this really reflect how people use parallel programs?
I Gustafson (1988) said no

I most users do not have some fixed problem size and ask how fast can I make it?
I instead, the more processors you give them, the bigger they will make the problem size
I almost every problem in science and engineering benefits from increased resolution or scale

I so a more useful measure of performance increases problem size with nprocs
I “weak scaling”

I parallelization is more effective with weak scaling than with strong scaling

S.F. Siegel � CISC 372: Parallel Computing � Performance 11



Weak Scaling vs. Strong Scaling

I Amdahl assumes inputs are held constant as nprocs increases
I “strong scaling”

I Amdahl shows that strong scaling is problematic
I there is always some point after which adding more procs cannot help

I does this really reflect how people use parallel programs?
I Gustafson (1988) said no

I most users do not have some fixed problem size and ask how fast can I make it?
I instead, the more processors you give them, the bigger they will make the problem size
I almost every problem in science and engineering benefits from increased resolution or scale

I so a more useful measure of performance increases problem size with nprocs
I “weak scaling”

I parallelization is more effective with weak scaling than with strong scaling

S.F. Siegel � CISC 372: Parallel Computing � Performance 11



Weak Scaling vs. Strong Scaling

I Amdahl assumes inputs are held constant as nprocs increases
I “strong scaling”

I Amdahl shows that strong scaling is problematic
I there is always some point after which adding more procs cannot help

I does this really reflect how people use parallel programs?
I Gustafson (1988) said no

I most users do not have some fixed problem size and ask how fast can I make it?
I instead, the more processors you give them, the bigger they will make the problem size
I almost every problem in science and engineering benefits from increased resolution or scale

I so a more useful measure of performance increases problem size with nprocs
I “weak scaling”

I parallelization is more effective with weak scaling than with strong scaling

S.F. Siegel � CISC 372: Parallel Computing � Performance 11



Weak vs. Strong Scaling

I strong scaling: baseline is constant as nprocs increases
I always comparing against sequential run on fixed problem size
I speedup is bounded

I strong scaling examples
I fix list of length 106; compare sequential time to sort vs. parallel time to sort with p procs
I fix nx = 103; compare sequential diffusion1d vs. parallel diffusion1d with p procs

I note nxl, the amount of data per process, decreases as p increases

I weak scaling: baseline increases with nprocs
I problem size of sequential program increases with nprocs
I it is possible for speedup→∞ as nprocs→∞

I weak scaling examples
I for p > 0, compare sequential time to sort list of length 106p with parallel time using p procs
I for p > 0, compare sequential diffusion1d with nx = 103p vs. parallel diffusion1d with p procs

I note nxl = 103 is held constant as p increases

S.F. Siegel � CISC 372: Parallel Computing � Performance 12



Weak vs. Strong Scaling

I strong scaling: baseline is constant as nprocs increases
I always comparing against sequential run on fixed problem size
I speedup is bounded

I strong scaling examples
I fix list of length 106; compare sequential time to sort vs. parallel time to sort with p procs
I fix nx = 103; compare sequential diffusion1d vs. parallel diffusion1d with p procs

I note nxl, the amount of data per process, decreases as p increases

I weak scaling: baseline increases with nprocs
I problem size of sequential program increases with nprocs
I it is possible for speedup→∞ as nprocs→∞

I weak scaling examples
I for p > 0, compare sequential time to sort list of length 106p with parallel time using p procs
I for p > 0, compare sequential diffusion1d with nx = 103p vs. parallel diffusion1d with p procs

I note nxl = 103 is held constant as p increases

S.F. Siegel � CISC 372: Parallel Computing � Performance 12



Weak vs. Strong Scaling

I strong scaling: baseline is constant as nprocs increases
I always comparing against sequential run on fixed problem size
I speedup is bounded

I strong scaling examples
I fix list of length 106; compare sequential time to sort vs. parallel time to sort with p procs
I fix nx = 103; compare sequential diffusion1d vs. parallel diffusion1d with p procs

I note nxl, the amount of data per process, decreases as p increases

I weak scaling: baseline increases with nprocs
I problem size of sequential program increases with nprocs
I it is possible for speedup→∞ as nprocs→∞

I weak scaling examples
I for p > 0, compare sequential time to sort list of length 106p with parallel time using p procs
I for p > 0, compare sequential diffusion1d with nx = 103p vs. parallel diffusion1d with p procs

I note nxl = 103 is held constant as p increases

S.F. Siegel � CISC 372: Parallel Computing � Performance 12



Weak vs. Strong Scaling

I strong scaling: baseline is constant as nprocs increases
I always comparing against sequential run on fixed problem size
I speedup is bounded

I strong scaling examples
I fix list of length 106; compare sequential time to sort vs. parallel time to sort with p procs
I fix nx = 103; compare sequential diffusion1d vs. parallel diffusion1d with p procs

I note nxl, the amount of data per process, decreases as p increases

I weak scaling: baseline increases with nprocs
I problem size of sequential program increases with nprocs
I it is possible for speedup→∞ as nprocs→∞

I weak scaling examples
I for p > 0, compare sequential time to sort list of length 106p with parallel time using p procs
I for p > 0, compare sequential diffusion1d with nx = 103p vs. parallel diffusion1d with p procs

I note nxl = 103 is held constant as p increases

S.F. Siegel � CISC 372: Parallel Computing � Performance 12



Weak vs. Strong Scaling

I strong scaling: baseline is constant as nprocs increases
I always comparing against sequential run on fixed problem size
I speedup is bounded

I strong scaling examples
I fix list of length 106; compare sequential time to sort vs. parallel time to sort with p procs
I fix nx = 103; compare sequential diffusion1d vs. parallel diffusion1d with p procs

I note nxl, the amount of data per process, decreases as p increases

I weak scaling: baseline increases with nprocs
I problem size of sequential program increases with nprocs
I it is possible for speedup→∞ as nprocs→∞

I weak scaling examples
I for p > 0, compare sequential time to sort list of length 106p with parallel time using p procs
I for p > 0, compare sequential diffusion1d with nx = 103p vs. parallel diffusion1d with p procs

I note nxl = 103 is held constant as p increases

S.F. Siegel � CISC 372: Parallel Computing � Performance 12



Efficiency

efficiency =
speedup

nprocs
=

Tseq

Tpar ∗ nprocs

I efficiency is “speedup per process”

I Amdahl says that for strong scaling:
I efficiency→ 0 as nprocs→∞

I for weak scaling, in best case it is possible:
I efficiency→ 1 as nprocs→∞

I more common: something between 0 and 1

S.F. Siegel � CISC 372: Parallel Computing � Performance 13



Efficiency

efficiency =
speedup

nprocs
=

Tseq

Tpar ∗ nprocs

I efficiency is “speedup per process”
I Amdahl says that for strong scaling:

I efficiency→ 0 as nprocs→∞

I for weak scaling, in best case it is possible:
I efficiency→ 1 as nprocs→∞

I more common: something between 0 and 1

S.F. Siegel � CISC 372: Parallel Computing � Performance 13



Efficiency

efficiency =
speedup

nprocs
=

Tseq

Tpar ∗ nprocs

I efficiency is “speedup per process”
I Amdahl says that for strong scaling:

I efficiency→ 0 as nprocs→∞
I for weak scaling, in best case it is possible:

I efficiency→ 1 as nprocs→∞
I more common: something between 0 and 1

S.F. Siegel � CISC 372: Parallel Computing � Performance 13



Automating performance experiments

I see exp/sat_strong in public course repo

I a strong scaling experiment of MPI SAT solver
I sat_mpi.c has been altered to

I print to stdout only the number of processes and time
I other things are sent to stderr

if (rank == 0) {

const double time = MPI_Wtime() - start_time;

fprintf(stderr, "Number of solutions = %u. Time = %lf.\n",

nsolutions, time);

fflush(stderr);

printf("%d %lf\n", nprocs, time);

}

S.F. Siegel � CISC 372: Parallel Computing � Performance 14



Automating performance experiments

I see exp/sat_strong in public course repo

I a strong scaling experiment of MPI SAT solver

I sat_mpi.c has been altered to
I print to stdout only the number of processes and time
I other things are sent to stderr

if (rank == 0) {

const double time = MPI_Wtime() - start_time;

fprintf(stderr, "Number of solutions = %u. Time = %lf.\n",

nsolutions, time);

fflush(stderr);

printf("%d %lf\n", nprocs, time);

}

S.F. Siegel � CISC 372: Parallel Computing � Performance 14



Automating performance experiments

I see exp/sat_strong in public course repo

I a strong scaling experiment of MPI SAT solver
I sat_mpi.c has been altered to

I print to stdout only the number of processes and time
I other things are sent to stderr

if (rank == 0) {

const double time = MPI_Wtime() - start_time;

fprintf(stderr, "Number of solutions = %u. Time = %lf.\n",

nsolutions, time);

fflush(stderr);

printf("%d %lf\n", nprocs, time);

}

S.F. Siegel � CISC 372: Parallel Computing � Performance 14



Data file generated by SAT performance experiment

I the Makefile executes sat_mpi.exec with 1, 2, 4, 8, 16, 32 procs

I the results are accumulated in a file sat_mpi.dat:

1 42.693483

2 29.942159

4 16.342128

8 9.844605

16 5.327622

32 2.452447

nprocs time speedup efficiency

1 43.75 1.00 1.00
2 30.46 1.44 0.72
4 16.47 2.66 0.66
8 8.68 5.04 0.63

16 4.89 8.95 0.56
32 2.52 17.36 0.54

S.F. Siegel � CISC 372: Parallel Computing � Performance 15



Data file generated by SAT performance experiment

I the Makefile executes sat_mpi.exec with 1, 2, 4, 8, 16, 32 procs
I the results are accumulated in a file sat_mpi.dat:

1 42.693483

2 29.942159

4 16.342128

8 9.844605

16 5.327622

32 2.452447

nprocs time speedup efficiency

1 43.75 1.00 1.00
2 30.46 1.44 0.72
4 16.47 2.66 0.66
8 8.68 5.04 0.63

16 4.89 8.95 0.56
32 2.52 17.36 0.54

S.F. Siegel � CISC 372: Parallel Computing � Performance 15



Data file generated by SAT performance experiment

I the Makefile executes sat_mpi.exec with 1, 2, 4, 8, 16, 32 procs
I the results are accumulated in a file sat_mpi.dat:

1 42.693483

2 29.942159

4 16.342128

8 9.844605

16 5.327622

32 2.452447

nprocs time speedup efficiency

1 43.75 1.00 1.00
2 30.46 1.44 0.72
4 16.47 2.66 0.66
8 8.68 5.04 0.63

16 4.89 8.95 0.56
32 2.52 17.36 0.54

S.F. Siegel � CISC 372: Parallel Computing � Performance 15



Data file generated by SAT performance experiment

I the Makefile executes sat_mpi.exec with 1, 2, 4, 8, 16, 32 procs
I the results are accumulated in a file sat_mpi.dat:

1 42.693483

2 29.942159

4 16.342128

8 9.844605

16 5.327622

32 2.452447

nprocs time speedup efficiency

1 43.75 1.00 1.00
2 30.46 1.44 0.72
4 16.47 2.66 0.66
8 8.68 5.04 0.63

16 4.89 8.95 0.56
32 2.52 17.36 0.54

S.F. Siegel � CISC 372: Parallel Computing � Performance 15



Graphing data with gnuplot

I free, open-source command-line tool for creating graphs

I http://www.gnuplot.info

I command: gnuplot sat_mpi.gnu

set terminal pdf

set output "sat_mpi.pdf"

set xlabel center "Number of processes"

set ylabel center "time (seconds)"

set xr [0:32]

set yr [0:45]

plot "sat_mpi.dat" using 1:2 title ’MPI’ with linespoints

I meaning of using 1:2
I use column 1 of the data file for the x-coordinates
I use column 2 of the data file for the y-coordinates

S.F. Siegel � CISC 372: Parallel Computing � Performance 16

http://www.gnuplot.info


Graphing data with gnuplot

I free, open-source command-line tool for creating graphs

I http://www.gnuplot.info

I command: gnuplot sat_mpi.gnu

set terminal pdf

set output "sat_mpi.pdf"

set xlabel center "Number of processes"

set ylabel center "time (seconds)"

set xr [0:32]

set yr [0:45]

plot "sat_mpi.dat" using 1:2 title ’MPI’ with linespoints

I meaning of using 1:2
I use column 1 of the data file for the x-coordinates
I use column 2 of the data file for the y-coordinates

S.F. Siegel � CISC 372: Parallel Computing � Performance 16

http://www.gnuplot.info


Graphing data with gnuplot

I free, open-source command-line tool for creating graphs

I http://www.gnuplot.info

I command: gnuplot sat_mpi.gnu

set terminal pdf

set output "sat_mpi.pdf"

set xlabel center "Number of processes"

set ylabel center "time (seconds)"

set xr [0:32]

set yr [0:45]

plot "sat_mpi.dat" using 1:2 title ’MPI’ with linespoints

I meaning of using 1:2
I use column 1 of the data file for the x-coordinates
I use column 2 of the data file for the y-coordinates

S.F. Siegel � CISC 372: Parallel Computing � Performance 16

http://www.gnuplot.info


Graphing data with gnuplot

I free, open-source command-line tool for creating graphs

I http://www.gnuplot.info

I command: gnuplot sat_mpi.gnu

set terminal pdf

set output "sat_mpi.pdf"

set xlabel center "Number of processes"

set ylabel center "time (seconds)"

set xr [0:32]

set yr [0:45]

plot "sat_mpi.dat" using 1:2 title ’MPI’ with linespoints

I meaning of using 1:2
I use column 1 of the data file for the x-coordinates
I use column 2 of the data file for the y-coordinates

S.F. Siegel � CISC 372: Parallel Computing � Performance 16

http://www.gnuplot.info


PDF file resulting from SAT scaling experiment

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15  20  25  30

tim
e

 (
s
e
c
o
n
d
s
)

Number of processes

MPI

S.F. Siegel � CISC 372: Parallel Computing � Performance 17



Makefile for SAT performance experiment

ROOT = ../../

include $(ROOT)/common.mk

NAME = sat_mpi

all: $(NAME).exec

$(NAME).exec: $(NAME).c Makefile

$(MPICCC) -o $@ $<

$(NAME).dat: $(NAME).exec

$(MPIRUN) -n 1 ./$(NAME).exec > $(NAME).dat

$(MPIRUN) -n 2 ./$(NAME).exec >> $(NAME).dat

$(MPIRUN) -n 4 ./$(NAME).exec >> $(NAME).dat

$(MPIRUN) -n 8 ./$(NAME).exec >> $(NAME).dat

$(MPIRUN) -n 16 ./$(NAME).exec >> $(NAME).dat

$(MPIRUN) -n 32 ./$(NAME).exec >> $(NAME).dat

graphs:

gnuplot $(NAME).gnu

.PHONY: all graphs

S.F. Siegel � CISC 372: Parallel Computing � Performance 18



Using gnuplot

Much more is possible. . .

I graph speedup

I graph efficiency
I graph multiple plots in one picture

I e.g.: sequential vs. MPI vs. OpenMP

S.F. Siegel � CISC 372: Parallel Computing � Performance 19



Graphing speedup with gnuplot

set output "sat_speedup.pdf"

set xlabel center "Number of processes"

set ylabel center "speedup"

set xr [0:32]

set yr [0:20]

first(x) = ($0 > 0 ? base : base = x)

plot "sat_mpi.dat" using 1:(first($2), base/$2) title ’Speedup’ with linespoints

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

s
p
e
e
d
u
p

Number of processes

Speedup

S.F. Siegel � CISC 372: Parallel Computing � Performance 20



Graphing efficiency with gnuplot

set output "sat_efficiency.pdf"

set xlabel center "Number of processes"

set ylabel center "efficiency"

set xr [0:32]

set yr [0:1]

first(x) = ($0 > 0 ? base : base = x)

plot "sat_mpi.dat" using 1:(first($2), base/($2*$1)) title ’Efficiency’ with linespoints

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

e
ff
c
ie
n
c
y

Number of processes

Effciency

S.F. Siegel � CISC 372: Parallel Computing � Performance 21


