CISC 372: Parallel Programming

MPI Point-to-Point Operations

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware



Point to Point Operations

» for sending a message from one process to another process

S.F. Siegel o CISC 372: Parallel Computing < Point-to-point 2



Point to Point Operations

» for sending a message from one process to another process
» sending process issues a send instruction

P receiving process issues a receive instruction

S.F. Siegel o CISC 372: Parallel Computing < Point-to-point 2



Point to Point Operations

» for sending a message from one process to another process
» sending process issues a send instruction
P receiving process issues a receive instruction

» can be considered “lower-level” than collective operations

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 2



Point to Point Operations

for sending a message from one process to another process
sending process issues a send instruction
receiving process issues a receive instruction

can be considered “lower-level” than collective operations

vvyyvyyVvVyy

all collective operations can be implemented using point-to-points
» but quality MPI implementations will provide better performance for collectives

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 2



Point to Point Operations

for sending a message from one process to another process
sending process issues a send instruction
receiving process issues a receive instruction

can be considered “lower-level” than collective operations

vvyyvyyVvVyy

all collective operations can be implemented using point-to-points
» but quality MPI implementations will provide better performance for collectives
» “push” model (like the mail)

» sending process specifies destination
P receiving process may or may not specify source

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 2



Message channels: conceptual framework

> the state of a communicator with 3 procs

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 3



Message channels: conceptual framework

> the state of a communicator with 3 procs
P> every communicator is isolated — has its
own state
> messages from one communicator are

never picked up by an operation from a
different communicator

S.F. Siegel CISC 372: Parallel Computing < Point-to-point 3



Message channels: conceptual framework

> the state of a communicator with 3 procs

P> every communicator is isolated — has its
own state
P> messages from one communicator are
never picked up by an operation from a
different communicator

P> between any 2 procs, there is a
p2p message channel

» including from proc to itself (rarely used)

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 3



Message channels: conceptual framework

S.F. Siegel

CISC 372: Parallel Computing

<

Point-to-point

the state of a communicator with 3 procs

every communicator is isolated — has its
own state

P> messages from one communicator are
never picked up by an operation from a
different communicator

between any 2 procs, there is a
p2p message channel

» including from proc to itself (rarely used)

send enqueues message



Message channels: conceptual framework

S.F. Siegel

CISC 372: Parallel Computing

<

Point-to-point

>
>

the state of a communicator with 3 procs

every communicator is isolated — has its
own state

P> messages from one communicator are
never picked up by an operation from a
different communicator

between any 2 procs, there is a
p2p message channel

» including from proc to itself (rarely used)
send enqueues message

recv dequeues message



Message channels: conceptual framework

S.F. Siegel

CISC 372: Parallel Computing

<

Point-to-point

the state of a communicator with 3 procs

every communicator is isolated — has its
own state

P> messages from one communicator are
never picked up by an operation from a
different communicator

between any 2 procs, there is a
p2p message channel

» including from proc to itself (rarely used)
send enqueues message
recv dequeues message

mostly a FIFO queue



P> each message has a tag




P> each message has a tag

P> an int specified by the sender




P> each message has a tag

P> an int specified by the sender
» the receiver may specify a tag
» or can specify “any tag"

S.F. Siegel CISC 372: Parallel Computing Point-to-point 4



P> each message has a tag

P> an int specified by the sender

» the receiver may specify a tag
» or can specify “any tag"

» if P2 issues recv from PO with tag 2
» P2 will receive message 1




each message has a tag

an int specified by the sender

the receiver may specify a tag
» or can specify “any tag"

if P2 issues recv from PO with tag 2
» P2 will receive message 1

if P2 issues recv from PO with tag 1

» P2 will receive message 2
> the first (oldest) message in queue with
matching tag



each message has a tag

an int specified by the sender

the receiver may specify a tag
» or can specify “any tag"

if P2 issues recv from PO with tag 2
» P2 will receive message 1

if P2 issues recv from PO with tag 1

» P2 will receive message 2
> the first (oldest) message in queue with
matching tag

if P2 issues recv from PO with “any tag”
» P2 will receive message 1



MPI_Send

MPI_Send(buf, count, datatype, dest, tag, comm)

buf address of send buffer (voidx)
count number of elements in buffer (int)
datatype data type of elements in buffer (MPI_Datatype)
dest rank of destination process (int)
tag integer to attach to message envelope (int)
comm communicator (MPI_Comm)

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 5



MPI_Send

MPI_Send(buf, count, datatype, dest, tag, comm)

buf address of send buffer (voidx)
count number of elements in buffer (int)
datatype data type of elements in buffer (MPI_Datatype)
dest rank of destination process (int)
tag integer to attach to message envelope (int)
comm communicator (MPI_Comm)

» message envelope

» source rank

» destination rank
> tag

» communicator

» tag can be used by receiver to select which message to receive

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 5



MPI_Recv

MPI_Recv(buf, count, datatype, source, tag, comm, status)

buf address of receive buffer (voidx)
count number of elements in buffer (int)
datatype data type of elements in buffer (MPI_Datatype)
source rank of source process (int)
tag tag of message to receive (int)
comm communicator (MPI_Comm)
status pointer to status object (MPI_Status*)

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 6



MPI_Recv

MPI_Recv(buf, count, datatype, source, tag, comm, status)

buf address of receive buffer (voidx)
count number of elements in buffer (int)
datatype data type of elements in buffer (MPI_Datatype)
source rank of source process (int)
tag tag of message to receive (int)
comm communicator (MPI_Comm)
status pointer to status object (MPI_Status*)

» count must be at least as large as count of incoming message
» otherwise, undefined behavior

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 6



MPI_Recv

MPI_Recv(buf, count, datatype, source, tag, comm, status)

buf address of receive buffer (voidx)
count number of elements in buffer (int)
datatype data type of elements in buffer (MPI_Datatype)
source rank of source process (int)
tag tag of message to receive (int)
comm communicator (MPI_Comm)
status pointer to status object (MPI_Status*)

» count must be at least as large as count of incoming message
» otherwise, undefined behavior

> status: object to store envelope information on received message
» source, tag, count
» if you don't need it, use MPI_STATUS_IGNORE

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 6



MPI_Recv

MPI_Recv(buf, count, datatype, source, tag, comm, status)

buf address of receive buffer (voidx)
count number of elements in buffer (int)
datatype data type of elements in buffer (MPI_Datatype)
source rank of source process (int)
tag tag of message to receive (int)
comm communicator (MPI_Comm)
status pointer to status object (MPI_Status*)

» count must be at least as large as count of incoming message
» otherwise, undefined behavior

> status: object to store envelope information on received message
» source, tag, count
» if you don't need it, use MPI_STATUS_IGNORE

» why would you need to know source and tag when you already specified them?
S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 6



Example: p2p.c

#include<stdio.h>
#include<mpi.h>
int main() {
int message, rank;
MPI_Init(NULL, NULL);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (rank == 0) {
message = 173;
MPI_Send(&message, 1, MPI_INT, 1, 9, MPI_COMM_WORLD);
} else if (rank == 1) {
MPI_Recv(&message, 1, MPI_INT, O, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf ("Proc 1 received: %d\n", message);
}
MPI_Finalize();

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 7



Example: p2p.c

#include<stdio.h>
#include<mpi.h>
int main() {
int message, rank;
MPI_Init(NULL, NULL);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (rank == 0) {
message = 173;
MPI_Send(&message, 1, MPI_INT, 1, 9, MPI_COMM_WORLD);
} else if (rank == 1) {
MPI_Recv(&message, 1, MPI_INT, O, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf ("Proc 1 received: %d\n", message);
}
MPI_Finalize();
¥

> mpiexec -n 4 ./p2p.exec
Proc 1 received: 173

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 7



Example: using different tags: tags.c

/*

#in
#in
int
i
M

i

}

tags.c: demonstration of receiving messages out of order using tags. Note that
this program is not safe --- technically, it could deadlock. But if it does not
deadlock, the messages will be received in the reverse order. */

clude<stdio.h>

clude<mpi.h>

main() {

nt message, rank;

PI_Init(NULL, NULL);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

f (rank == 0) {

message = 1; MPI_Send(&message, 1, MPI_INT, 1, 1, MPI_COMM_WORLD); // tag=1
message = 2; MPI_Send(&message, 1, MPI_INT, 1, 2, MPI_COMM_WORLD); // tag=2

else if (rank == 1) {

MPI_Recv(&message, 1, MPI_INT, O, 2, MPI_COMM_WORLD, MPI_STATUS_IGNORE); // tag=2
printf ("Proc 1 received: %d\n", message);

MPI_Recv(&message, 1, MPI_INT, O, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE); // tag=1
printf ("Proc 1 received: %d\n", message);

MPI_Finalize();

S.F. Siegel

< CISC 372: Parallel Computing < Point-to-point 8




MPI_ANY_TAG

» a recv can use MPI_ANY_TAG for the tag argument
> receive a message from sender with “any tag"”
» it will always match the oldest message from the sender

P execution is deterministic — one and only one thing can happen

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 9



Example: using MPI_ANY_TAG: anytag.c

/* anytag: the messages will be received in the order sent. The MPI_ANY_TAG recv
must match the oldest message sent from proc 0 */
#include<stdio.h>
#include<mpi.h>
int main() {
int message, rank;
MPI_Init(NULL, NULL);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (rank == 0) {
message = 1;
MPI_Send(&message, 1, MPI_INT, 1, 1, MPI_COMM_WORLD); // tag=1
message = 2;
MPI_Send(&message, 1, MPI_INT, 1, 2, MPI_COMM_WORLD); // tag=2
} else if (rank == 1) {
MPI_Recv(&message, 1, MPI_INT, O, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf ("Proc 1 received: %d\n", message);
MPI_Recv(&message, 1, MPI_INT, O, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf("Proc 1 received: %d\n", message);
}
MPI_Finalize();
}

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 10



Getting the status

status is a C struct

S.F. Siegel

<&

CISC 372: Parallel Computing

o

Point-to-point

11



Getting the status

status is a C struct
» getting the rank of the source
» status.MPI_SOURCE

S.F. Siegel o CISC 372: Parallel Computing o Point-to-point

11



Getting the status

status is a C struct
» getting the rank of the source
» status.MPI_SOURCE

» getting the tag of the message
> status.MPI_TAG

S.F. Siegel o CISC 372: Parallel Computing < Point-to-point

11



Getting the status

status is a C struct
» getting the rank of the source
» status.MPI_SOURCE

» getting the tag of the message
> status.MPI_TAG

» getting the error code
» status.MPI_ERROR

S.F. Siegel o CISC 372: Parallel Computing < Point-to-point

11



Getting the status

status is a C struct
» getting the rank of the source
» status.MPI_SOURCE
» getting the tag of the message
> status.MPI_TAG
» getting the error code
» status.MPI_ERROR
> getting the size (“count”) of the message

» not simply a field in the struct
» need to use function MPI_Get_count

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 11



Example: status.c

#include<string.h>
#include<stdio.h>
#include<mpi.h>

int main() {
char message[100];
int rank;
MPI_Status status;

MPI_Init(NULL, NULL);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (rank == 0) {
strcpy(message, "Hello, from proc 0!");
MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);
} else if (rank == 1) {
MPI_Recv(message, 100, MPI_CHAR, O, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
printf ("Proc 1 received: \"%s\"\n", message);
printf ("source=%d tag=/%d \n", status.MPI_SOURCE, status.MPI_TAG);
}
MPI_Finalize();

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 12



status.c output

Note that in C, a string is a sequence of char ending with the “null terminating char” ’\0’.
The number of characters in the string is therefore strlen(message) + 1 =19+ 1= 20.

> mpiexec status.exec
Proc 1 received: "Hello, from proc O!"
source=0 tag=99

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 13



MPI_Get_count

MPI_Get_count(status, datatype, count)
status pointer to status object (MPI_Status*)

datatype data type of elements received (MPI_Datatype)
count pointer to variable in which to return result (int*)

S.F. Siegel o CISC 372: Parallel Computing < Point-to-point 14



MPI_Get_count

MPI_Get_count(status, datatype, count)

status pointer to status object (MPI_Status*)
datatype data type of elements received (MPI_Datatype)
count pointer to variable in which to return result (int*)

» should only be called after status has been filled in by receive

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 14



MPI_Get_count

MPI_Get_count(status, datatype, count)

status pointer to status object (MPI_Status*)
datatype data type of elements received (MPI_Datatype)
count pointer to variable in which to return result (int*)

» should only be called after status has been filled in by receive

» datatype should be same as used in receive

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 14



MPI_Get_count

MPI_Get_count(status, datatype, count)

status pointer to status object (MPI_Status*)
datatype data type of elements received (MPI_Datatype)
count pointer to variable in which to return result (int*)

» should only be called after status has been filled in by receive
» datatype should be same as used in receive

» sets count to the number of elements received

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 14



MPI_Get_count

MPI_Get_count(status, datatype, count)

status pointer to status object (MPI_Status*)
datatype data type of elements received (MPI_Datatype)
count pointer to variable in which to return result (int*)
should only be called after status has been filled in by receive
datatype should be same as used in receive

sets count to the number of elements received

vvyyvYyy

note

P count specified in receive statement and message count can differ
» receive buffer must be big enough to hold incoming message
» memory in receive buffer after message count will not be altered

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 14



Example: getting the count: count.c

The following lines are added to proc 1:

int count;

MPI_Get_count (&status, MPI_CHAR, &count);

printf ("source=)d tag=%d count=Yd\n",
status.MPI_SOURCE, status.MPI_TAG, count);

S.F. Siegel o CISC 372: Parallel Computing < Point-to-point 15



Example: getting the count: count.c

The following lines are added to proc 1:

int count;

MPI_Get_count (&status, MPI_CHAR, &count);

printf ("source=)d tag=%d count=Yd\n",
status.MPI_SOURCE, status.MPI_TAG, count);

This sets count to the actual number of characters (MPI_CHAR) received.

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 15



Example: getting the count: count.c

The following lines are added to proc 1:

int count;

MPI_Get_count (&status, MPI_CHAR, &count);

printf ("source=)d tag=%d count=Yd\n",
status.MPI_SOURCE, status.MPI_TAG, count);

This sets count to the actual number of characters (MPI_CHAR) received.

> mpiexec -n 4 ./count.exec
Proc 1 received: "Hello, from proc O!"
source=0 tag=99 count=20

Note the null terminating character is counted.

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 15



Synchronization and deadlock

P a receive operation must block until a matching message arrives

S.F. Siegel o CISC 372: Parallel Computing <o Point-to-point 16



Synchronization and deadlock

P a receive operation must block until a matching message arrives
» this can lead to deadlocks if you are not careful; see deadlock.c

#include<stdio.h>
#include<mpi.h>
int main() {
int message, rank;
MPI_Init(NULL, NULL);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (rank == 0) {
message = 173;
printf("Proc 0: was I supposed to do something?\n");
} else if (rank == 1) {
MPI_Recv(&message, 1, MPI_INT, O, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf ("Proc 1 received: %d\n", message);
}
MPI_Finalize(Q);

S.F. Siegel o CISC 372: Parallel Computing < Point-to-point 16



Synchronization and deadlock

P a receive operation must block until a matching message arrives
» this can lead to deadlocks if you are not careful; see deadlock.c

#include<stdio.h>
#include<mpi.h>
int main() {
int message, rank;
MPI_Init(NULL, NULL);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (rank == 0) {
message = 173;
printf("Proc 0: was I supposed to do something?\n");
} else if (rank == 1) {
MPI_Recv(&message, 1, MPI_INT, O, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf ("Proc 1 received: %d\n", message);
}
MPI_Finalize(Q);

mpiexec -n 4 ./deadlock.exec
Proc 0: was I supposed to do something?
“C[mpiexec@basie.local] Sending Ctrl-C to processes as requested

S.F. Siegel o CISC 372: Parallel Computing < Point-to-point 16



Synchronization and potential deadlock

» a send operation ...

S.F. Siegel o CISC 372: Parallel Computing <o Point-to-point 17



Synchronization and potential deadlock

» a send operation ...
» may complete even if a matching receive operation has not been executed
> the message will be stored in a system buffer (channel)

S.F. Siegel o CISC 372: Parallel Computing < Point-to-point 17



Synchronization and potential deadlock

» a send operation ...
» may complete even if a matching receive operation has not been executed
> the message will be stored in a system buffer (channel)
» or it may block until a matching receive is available
> the message can then be copied directly from send buffer to recv buffer

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 17



Synchronization and potential deadlock

» a send operation ...
» may complete even if a matching receive operation has not been executed
> the message will be stored in a system buffer (channel)
» or it may block until a matching receive is available
> the message can then be copied directly from send buffer to recv buffer

» the choice is up to the MPIl implementation

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 17



Synchronization and potential deadlock

» a send operation ...
» may complete even if a matching receive operation has not been executed
> the message will be stored in a system buffer (channel)
» or it may block until a matching receive is available
> the message can then be copied directly from send buffer to recv buffer

» the choice is up to the MPIl implementation

» the decision can be made differently at each send operation

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 17



Synchronization and potential deadlock

» a send operation ...
» may complete even if a matching receive operation has not been executed
> the message will be stored in a system buffer (channel)
» or it may block until a matching receive is available
> the message can then be copied directly from send buffer to recv buffer

» the choice is up to the MPIl implementation
» the decision can be made differently at each send operation

» you cannot assume anything

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 17



Synchronization and potential deadlock

» a send operation ...
» may complete even if a matching receive operation has not been executed
> the message will be stored in a system buffer (channel)
» or it may block until a matching receive is available
> the message can then be copied directly from send buffer to recv buffer

» the choice is up to the MPIl implementation
» the decision can be made differently at each send operation
» you cannot assume anything

» a correct program will behave correctly regardless of how this decision is made

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 17



Example may_deadlock.c: a potential deadlock

#include<stdio.h>
#include<mpi.h>

int main() {
int message, rank;

MPI_Init(NULL, NULL);
MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
if (rank == 0) {

message = 173;

MPI_Send(&message, 1, MPI_INT, 1, 9, MPI_COMM_WORLD);
} else if (rank == 1) {

printf("Proc 1: was I supposed to do something?\n");
}
MPI_Finalize();

S.F. Siegel o CISC 372: Parallel Computing < Point-to-point 18



Exchanging data

S.F. Siegel o

CISC 372: Parallel Computing

<o Point-to-point

19




Exchanging data

» suppose two processes wish to exchange some data

» proc 0 wants to send something to proc 1, and
» proc 1 wants to send something to proc 0

S.F. Siegel o CISC 372: Parallel Computing < Point-to-point 19



Exchanging data

» suppose two processes wish to exchange some data

» proc 0 wants to send something to proc 1, and
» proc 1 wants to send something to proc 0

» very common scenario

S.F. Siegel o CISC 372: Parallel Computing < Point-to-point 19



Exchanging data

» suppose two processes wish to exchange some data
» proc 0 wants to send something to proc 1, and
» proc 1 wants to send something to proc 0

» very common scenario

» how to it safely?

» must be correct
» must not deadlock

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 19



Exchange 1: Incorrect: will deadlock!

» both procs try to receive before sending

int main() {

int rank, myNumber, otherNumber;

MPI_Init(NULL, NULL);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

if (rank == 0) {
myNumber = 10;
MPI_Recv(&otherNumber, 1, MPI_INT, 1, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Send(&myNumber, 1, MPI_INT, 1, 9, MPI_COMM_WORLD);

} else if (rank == 1) {
myNumber = 20;
MPI_Recv(&otherNumber, 1, MPI_INT,
MPI_Send (&myNumber, 1, MPI_INT, O,

}

printf ("Process %d: received %d\n", rank, otherNumber);

MPI_Finalize();

o

, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
, MPI_COMM_WORLD) ;

©

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 20



Exchange 2: Unsafe: may deadlock!

» both procs send before receiving — what if MPI tries to execute both sends synchronously?

int main() {
int rank, myNumber, otherNumber;
MPI_Init(NULL, NULL);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (rank == 0) {
myNumber = 10;
MPI_Send(&myNumber, 1, MPI_INT, 1, 99, MPI_COMM_WORLD);
MPI_Recv(&otherNumber, 1, MPI_INT, 1, 99, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else if (rank == 1) {
myNumber = 20;
MPI_Send(&myNumber, 1, MPI_INT, O, 99, MPI_COMM_WORLD);
MPI_Recv(&otherNumber, 1, MPI_INT, O, 99, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
printf ("Process %d: received %d\n", rank, otherNumber);
MPI_Finalize();

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 21



Exchange 3: Correct: procs alternate

» one proc sends, then receives; the other proc receives, then sends

int main() {

int rank, myNumber, otherNumber;

MPI_Init(NULL, NULL);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

if (rank == 0) {
myNumber = 10;
MPI_Send(&myNumber, 1, MPI_INT, 1, 99, MPI_COMM_WORLD);
MPI_Recv(&otherNumber, 1, MPI_INT, 1, 99, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

} else if (rank == 1) {
myNumber = 20;
MPI_Recv(&otherNumber, 1, MPI_INT, O, 99, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Send(&myNumber, 1, MPI_INT, O, 99, MPI_COMM_WORLD) ;

}

printf ("Process %d: received %d\n", rank, otherNumber);

MPI_Finalize();

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 22



Exchanging with MPI_Sendrecv

» this situation is so common, MPI provides a function to deal with it
» MPI_Sendrecv combines one send and one receive operation into a single command

» both operations execute concurrently

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 23



MPI_Sendrecv
MPI_Sendrecv(sbuf, scount, stype, dest, stag,

sbuf
scount
stype
dest
stag
rbuf
rcount
rtype
source
rtag
comm

status
S.F. Siegel

rbuf, rcount, rtype, source, rtag,
comm, status)

address of send buffer (voidx)

number of elements in send buffer (int)

data type of elements in sbuf (MPI_Datatype)
rank of destination process (int)

integer to attach to message envelope (int)
address of receive buffer (voidx)

length of receive buffer (int)

data type of elements to be received (MPI_Datatype)
rank of sending process (int)

tag of message to receive (int)

communicator (MPI_Comm)

pointer to status object for receive (MPI_Statusx)

CISC 372: Parallel Computing < Point-to-point 24



Semantics and uses of MPI_Sendrecv

» combines a send statement and a receive statement into one statement

S.F. Siegel o CISC 372: Parallel Computing <o Point-to-point 25



Semantics and uses of MPI_Sendrecv

» combines a send statement and a receive statement into one statement

» both operations post simultaneously

S.F. Siegel o CISC 372: Parallel Computing < Point-to-point 25



Semantics and uses of MPI_Sendrecv

» combines a send statement and a receive statement into one statement
» both operations post simultaneously

» as if two threads are spawned, one to manage the send, the other the receive

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 25



Semantics and uses of MPI_Sendrecv

» combines a send statement and a receive statement into one statement
» both operations post simultaneously
» as if two threads are spawned, one to manage the send, the other the receive

» the operation completes only after both the send and receive complete

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 25



Semantics and uses of MPI_Sendrecv

combines a send statement and a receive statement into one statement
both operations post simultaneously
as if two threads are spawned, one to manage the send, the other the receive

the operation completes only after both the send and receive complete

vVvyyvyVvyy

solves the deadlocking problem for data exchange

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 25



Semantics and uses of MPI_Sendrecv

combines a send statement and a receive statement into one statement

both operations post simultaneously

as if two threads are spawned, one to manage the send, the other the receive
the operation completes only after both the send and receive complete

solves the deadlocking problem for data exchange

vvyvyVvVYyyvyy

cyclic exchange

» 0 —+1—-2—-3-0
» process of rank i

> sends to i + 1 (modulo numProcs)
> receives from /i — 1 (modulo numProcs)

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 25



Semantics and uses of MPI_Sendrecv

combines a send statement and a receive statement into one statement

both operations post simultaneously

as if two threads are spawned, one to manage the send, the other the receive
the operation completes only after both the send and receive complete

solves the deadlocking problem for data exchange

vvyvyVvVYyyvyy

cyclic exchange
»0—-+1—-2—-3—=0
» process of rank i
> sends to i + 1 (modulo numProcs)
> receives from /i — 1 (modulo numProcs)
> shift
»0—+1—+2—=3
> proc 0 only sends
» proc nprocs — 1 only receives
» or use MPI_PROC_NULL

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 25



Exchange 4: Correct: MPI_Sendrecv

int main() {
int rank, myNumber, otherNumber;
MPI_Init(NULL, NULL);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (rank == 0) {
myNumber = 10;
MPI_Sendrecv (&myNumber, 1, MPI_INT, 1, 99, &otherNumber, 1, MPI_INT, 1, 99,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else if (rank == 1) {
myNumber = 20;
MPI_Sendrecv(&myNumber, 1, MPI_INT, O, 99, &otherNumber, 1, MPI_INT, 0, 99,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
¥
printf ("Process %d: received %d\n", rank, otherNumber);
MPI_Finalize();

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 26



Cyclic exchange: cycle.c

#include<stdio.h>
#include<mpi.h>

int main() {
int nprocs, rank;

MPI_Init(NULL, NULL);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &nprocs);

const int right = (rank + 1)%nprocs, left = (rank + nprocs - 1)Jnprocs;

int rbuf, sbuf = 100 + rank;

MPI_Sendrecv(&sbuf, 1, MPI_INT, right, O, &rbuf, 1, MPI_INT, left, O,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf ("Proc %d: received %d\n", rank, rbuf);

MPI_Finalize();

» note use of rank + nprocs - 1 to avoid a negative argument to modulo operator

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 27



Shift exchange: shift.c

#include<stdio.h>
#include<mpi.h>

int main() {
int nprocs, rank;

MPI_Init (NULL, NULL);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &nprocs);
const int right = rank < nprocs - 1 ? rank + 1 : MPI_PROC_NULL,
left = rank > O ? rank - 1 : MPI_PROC_NULL;
int rbuf, sbuf = 100 + rank;
MPI_Sendrecv(&sbuf, 1, MPI_INT, right, 0, &rbuf, 1, MPI_INT, left, O,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
if (rank > 0) printf("Proc %d: received %d\n", rank, rbuf);
MPI_Finalize();

» a send or receive to MPI_PROC_NULL is a no-op

S.F. Siegel < CISC 372: Parallel Computing < Point-to-point 28



Semantics: Non-interaction with collectives

» an MPI program can use both point-to-point and collective operations
» point-to-point and collective operations exist in two separate universes

» there is no “matching” between p2p and collective operations
» a message sent by a p2p can never be received by a collective
P a message sent by a collective can never be received by a p2p

S.F. Siegel o CISC 372: Parallel Computing < Point-to-point 29



