
CISC 372: Parallel Programming

MPI Point-to-Point Operations

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware



Point to Point Operations

I for sending a message from one process to another process

I sending process issues a send instruction

I receiving process issues a receive instruction

I can be considered “lower-level” than collective operations
I all collective operations can be implemented using point-to-points

I but quality MPI implementations will provide better performance for collectives

I “push” model (like the mail)
I sending process specifies destination
I receiving process may or may not specify source

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 2



Point to Point Operations

I for sending a message from one process to another process

I sending process issues a send instruction

I receiving process issues a receive instruction

I can be considered “lower-level” than collective operations
I all collective operations can be implemented using point-to-points

I but quality MPI implementations will provide better performance for collectives

I “push” model (like the mail)
I sending process specifies destination
I receiving process may or may not specify source

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 2



Point to Point Operations

I for sending a message from one process to another process

I sending process issues a send instruction

I receiving process issues a receive instruction

I can be considered “lower-level” than collective operations

I all collective operations can be implemented using point-to-points
I but quality MPI implementations will provide better performance for collectives

I “push” model (like the mail)
I sending process specifies destination
I receiving process may or may not specify source

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 2



Point to Point Operations

I for sending a message from one process to another process

I sending process issues a send instruction

I receiving process issues a receive instruction

I can be considered “lower-level” than collective operations
I all collective operations can be implemented using point-to-points

I but quality MPI implementations will provide better performance for collectives

I “push” model (like the mail)
I sending process specifies destination
I receiving process may or may not specify source

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 2



Point to Point Operations

I for sending a message from one process to another process

I sending process issues a send instruction

I receiving process issues a receive instruction

I can be considered “lower-level” than collective operations
I all collective operations can be implemented using point-to-points

I but quality MPI implementations will provide better performance for collectives

I “push” model (like the mail)
I sending process specifies destination
I receiving process may or may not specify source

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 2



Message channels: conceptual framework

P0 P1

P2
1

2

3 45
6

7

8

I the state of a communicator with 3 procs

I every communicator is isolated — has its
own state
I messages from one communicator are

never picked up by an operation from a
different communicator

I between any 2 procs, there is a
p2p message channel
I including from proc to itself (rarely used)

I send enqueues message

I recv dequeues message

I mostly a FIFO queue

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 3



Message channels: conceptual framework

P0 P1

P2
1

2

3 45
6

7

8

I the state of a communicator with 3 procs
I every communicator is isolated — has its

own state
I messages from one communicator are

never picked up by an operation from a
different communicator

I between any 2 procs, there is a
p2p message channel
I including from proc to itself (rarely used)

I send enqueues message

I recv dequeues message

I mostly a FIFO queue

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 3



Message channels: conceptual framework

P0 P1

P2
1

2

3 45
6

7

8

I the state of a communicator with 3 procs
I every communicator is isolated — has its

own state
I messages from one communicator are

never picked up by an operation from a
different communicator

I between any 2 procs, there is a
p2p message channel
I including from proc to itself (rarely used)

I send enqueues message

I recv dequeues message

I mostly a FIFO queue

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 3



Message channels: conceptual framework

P0 P1

P2
1

2

3 45
6

7

8

I the state of a communicator with 3 procs
I every communicator is isolated — has its

own state
I messages from one communicator are

never picked up by an operation from a
different communicator

I between any 2 procs, there is a
p2p message channel
I including from proc to itself (rarely used)

I send enqueues message

I recv dequeues message

I mostly a FIFO queue

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 3



Message channels: conceptual framework

P0 P1

P2
1

2

3 45
6

7

8

I the state of a communicator with 3 procs
I every communicator is isolated — has its

own state
I messages from one communicator are

never picked up by an operation from a
different communicator

I between any 2 procs, there is a
p2p message channel
I including from proc to itself (rarely used)

I send enqueues message

I recv dequeues message

I mostly a FIFO queue

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 3



Message channels: conceptual framework

P0 P1

P2
1

2

3 45
6

7

8

I the state of a communicator with 3 procs
I every communicator is isolated — has its

own state
I messages from one communicator are

never picked up by an operation from a
different communicator

I between any 2 procs, there is a
p2p message channel
I including from proc to itself (rarely used)

I send enqueues message

I recv dequeues message

I mostly a FIFO queue

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 3



Tags

P0 P1

P2
1

2

3 45
6

7

8

01

2 9

2

0

2

0

tag

I each message has a tag

I an int specified by the sender
I the receiver may specify a tag

I or can specify “any tag”

I if P2 issues recv from P0 with tag 2
I P2 will receive message 1

I if P2 issues recv from P0 with tag 1
I P2 will receive message 2
I the first (oldest) message in queue with

matching tag

I if P2 issues recv from P0 with “any tag”
I P2 will receive message 1

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 4



Tags

P0 P1

P2
1

2

3 45
6

7

8

01

2 9

2

0

2

0

tag

I each message has a tag

I an int specified by the sender

I the receiver may specify a tag
I or can specify “any tag”

I if P2 issues recv from P0 with tag 2
I P2 will receive message 1

I if P2 issues recv from P0 with tag 1
I P2 will receive message 2
I the first (oldest) message in queue with

matching tag

I if P2 issues recv from P0 with “any tag”
I P2 will receive message 1

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 4



Tags

P0 P1

P2
1

2

3 45
6

7

8

01

2 9

2

0

2

0

tag

I each message has a tag

I an int specified by the sender
I the receiver may specify a tag

I or can specify “any tag”

I if P2 issues recv from P0 with tag 2
I P2 will receive message 1

I if P2 issues recv from P0 with tag 1
I P2 will receive message 2
I the first (oldest) message in queue with

matching tag

I if P2 issues recv from P0 with “any tag”
I P2 will receive message 1

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 4



Tags

P0 P1

P2
1

2

3 45
6

7

8

01

2 9

2

0

2

0

tag

I each message has a tag

I an int specified by the sender
I the receiver may specify a tag

I or can specify “any tag”

I if P2 issues recv from P0 with tag 2
I P2 will receive message 1

I if P2 issues recv from P0 with tag 1
I P2 will receive message 2
I the first (oldest) message in queue with

matching tag

I if P2 issues recv from P0 with “any tag”
I P2 will receive message 1

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 4



Tags

P0 P1

P2
1

2

3 45
6

7

8

01

2 9

2

0

2

0

tag

I each message has a tag

I an int specified by the sender
I the receiver may specify a tag

I or can specify “any tag”

I if P2 issues recv from P0 with tag 2
I P2 will receive message 1

I if P2 issues recv from P0 with tag 1
I P2 will receive message 2
I the first (oldest) message in queue with

matching tag

I if P2 issues recv from P0 with “any tag”
I P2 will receive message 1

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 4



Tags

P0 P1

P2
1

2

3 45
6

7

8

01

2 9

2

0

2

0

tag

I each message has a tag

I an int specified by the sender
I the receiver may specify a tag

I or can specify “any tag”

I if P2 issues recv from P0 with tag 2
I P2 will receive message 1

I if P2 issues recv from P0 with tag 1
I P2 will receive message 2
I the first (oldest) message in queue with

matching tag

I if P2 issues recv from P0 with “any tag”
I P2 will receive message 1

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 4



MPI_Send

MPI_Send(buf, count, datatype, dest, tag, comm)

buf address of send buffer (void*)
count number of elements in buffer (int)

datatype data type of elements in buffer (MPI_Datatype)
dest rank of destination process (int)
tag integer to attach to message envelope (int)
comm communicator (MPI_Comm)

I message envelope
I source rank
I destination rank
I tag
I communicator

I tag can be used by receiver to select which message to receive

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 5



MPI_Send

MPI_Send(buf, count, datatype, dest, tag, comm)

buf address of send buffer (void*)
count number of elements in buffer (int)

datatype data type of elements in buffer (MPI_Datatype)
dest rank of destination process (int)
tag integer to attach to message envelope (int)
comm communicator (MPI_Comm)

I message envelope
I source rank
I destination rank
I tag
I communicator

I tag can be used by receiver to select which message to receive

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 5



MPI_Recv

MPI_Recv(buf, count, datatype, source, tag, comm, status)

buf address of receive buffer (void*)
count number of elements in buffer (int)

datatype data type of elements in buffer (MPI_Datatype)
source rank of source process (int)

tag tag of message to receive (int)
comm communicator (MPI_Comm)

status pointer to status object (MPI_Status*)

I count must be at least as large as count of incoming message
I otherwise, undefined behavior

I status: object to store envelope information on received message
I source, tag, count
I if you don’t need it, use MPI_STATUS_IGNORE

I why would you need to know source and tag when you already specified them?

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 6



MPI_Recv

MPI_Recv(buf, count, datatype, source, tag, comm, status)

buf address of receive buffer (void*)
count number of elements in buffer (int)

datatype data type of elements in buffer (MPI_Datatype)
source rank of source process (int)

tag tag of message to receive (int)
comm communicator (MPI_Comm)

status pointer to status object (MPI_Status*)

I count must be at least as large as count of incoming message
I otherwise, undefined behavior

I status: object to store envelope information on received message
I source, tag, count
I if you don’t need it, use MPI_STATUS_IGNORE

I why would you need to know source and tag when you already specified them?

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 6



MPI_Recv

MPI_Recv(buf, count, datatype, source, tag, comm, status)

buf address of receive buffer (void*)
count number of elements in buffer (int)

datatype data type of elements in buffer (MPI_Datatype)
source rank of source process (int)

tag tag of message to receive (int)
comm communicator (MPI_Comm)

status pointer to status object (MPI_Status*)

I count must be at least as large as count of incoming message
I otherwise, undefined behavior

I status: object to store envelope information on received message
I source, tag, count
I if you don’t need it, use MPI_STATUS_IGNORE

I why would you need to know source and tag when you already specified them?

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 6



MPI_Recv

MPI_Recv(buf, count, datatype, source, tag, comm, status)

buf address of receive buffer (void*)
count number of elements in buffer (int)

datatype data type of elements in buffer (MPI_Datatype)
source rank of source process (int)

tag tag of message to receive (int)
comm communicator (MPI_Comm)

status pointer to status object (MPI_Status*)

I count must be at least as large as count of incoming message
I otherwise, undefined behavior

I status: object to store envelope information on received message
I source, tag, count
I if you don’t need it, use MPI_STATUS_IGNORE

I why would you need to know source and tag when you already specified them?
S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 6



Example: p2p.c

#include<stdio.h>

#include<mpi.h>

int main() {

int message, rank;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

message = 173;

MPI_Send(&message, 1, MPI_INT, 1, 9, MPI_COMM_WORLD);

} else if (rank == 1) {

MPI_Recv(&message, 1, MPI_INT, 0, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Proc 1 received: %d\n", message);

}

MPI_Finalize();

}

> mpiexec -n 4 ./p2p.exec

Proc 1 received: 173

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 7



Example: p2p.c

#include<stdio.h>

#include<mpi.h>

int main() {

int message, rank;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

message = 173;

MPI_Send(&message, 1, MPI_INT, 1, 9, MPI_COMM_WORLD);

} else if (rank == 1) {

MPI_Recv(&message, 1, MPI_INT, 0, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Proc 1 received: %d\n", message);

}

MPI_Finalize();

}

> mpiexec -n 4 ./p2p.exec

Proc 1 received: 173

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 7



Example: using different tags: tags.c

/* tags.c: demonstration of receiving messages out of order using tags. Note that

this program is not safe --- technically, it could deadlock. But if it does not

deadlock, the messages will be received in the reverse order. */

#include<stdio.h>

#include<mpi.h>

int main() {

int message, rank;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

message = 1; MPI_Send(&message, 1, MPI_INT, 1, 1, MPI_COMM_WORLD); // tag=1

message = 2; MPI_Send(&message, 1, MPI_INT, 1, 2, MPI_COMM_WORLD); // tag=2

} else if (rank == 1) {

MPI_Recv(&message, 1, MPI_INT, 0, 2, MPI_COMM_WORLD, MPI_STATUS_IGNORE); // tag=2

printf("Proc 1 received: %d\n", message);

MPI_Recv(&message, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE); // tag=1

printf("Proc 1 received: %d\n", message);

}

MPI_Finalize();

}

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 8



MPI_ANY_TAG

I a recv can use MPI_ANY_TAG for the tag argument

I receive a message from sender with “any tag”

I it will always match the oldest message from the sender

I execution is deterministic — one and only one thing can happen

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 9



Example: using MPI_ANY_TAG: anytag.c

/* anytag: the messages will be received in the order sent. The MPI_ANY_TAG recv

must match the oldest message sent from proc 0 */

#include<stdio.h>

#include<mpi.h>

int main() {

int message, rank;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

message = 1;

MPI_Send(&message, 1, MPI_INT, 1, 1, MPI_COMM_WORLD); // tag=1

message = 2;

MPI_Send(&message, 1, MPI_INT, 1, 2, MPI_COMM_WORLD); // tag=2

} else if (rank == 1) {

MPI_Recv(&message, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Proc 1 received: %d\n", message);

MPI_Recv(&message, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Proc 1 received: %d\n", message);

}

MPI_Finalize();

}

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 10



Getting the status

status is a C struct

I getting the rank of the source
I status.MPI_SOURCE

I getting the tag of the message
I status.MPI_TAG

I getting the error code
I status.MPI_ERROR

I getting the size (“count”) of the message
I not simply a field in the struct
I need to use function MPI_Get_count

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 11



Getting the status

status is a C struct

I getting the rank of the source
I status.MPI_SOURCE

I getting the tag of the message
I status.MPI_TAG

I getting the error code
I status.MPI_ERROR

I getting the size (“count”) of the message
I not simply a field in the struct
I need to use function MPI_Get_count

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 11



Getting the status

status is a C struct

I getting the rank of the source
I status.MPI_SOURCE

I getting the tag of the message
I status.MPI_TAG

I getting the error code
I status.MPI_ERROR

I getting the size (“count”) of the message
I not simply a field in the struct
I need to use function MPI_Get_count

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 11



Getting the status

status is a C struct

I getting the rank of the source
I status.MPI_SOURCE

I getting the tag of the message
I status.MPI_TAG

I getting the error code
I status.MPI_ERROR

I getting the size (“count”) of the message
I not simply a field in the struct
I need to use function MPI_Get_count

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 11



Getting the status

status is a C struct

I getting the rank of the source
I status.MPI_SOURCE

I getting the tag of the message
I status.MPI_TAG

I getting the error code
I status.MPI_ERROR

I getting the size (“count”) of the message
I not simply a field in the struct
I need to use function MPI_Get_count

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 11



Example: status.c

#include<string.h>

#include<stdio.h>

#include<mpi.h>

int main() {

char message[100];

int rank;

MPI_Status status;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

strcpy(message,"Hello, from proc 0!");

MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);

} else if (rank == 1) {

MPI_Recv(message, 100, MPI_CHAR, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

printf("Proc 1 received: \"%s\"\n", message);

printf("source=%d tag=%d \n", status.MPI_SOURCE, status.MPI_TAG);

}

MPI_Finalize();

}

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 12



status.c output

Note that in C, a string is a sequence of char ending with the “null terminating char” ’\0’.
The number of characters in the string is therefore strlen(message) + 1 = 19 + 1 = 20.

> mpiexec status.exec

Proc 1 received: "Hello, from proc 0!"

source=0 tag=99

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 13



MPI_Get_count

MPI_Get_count(status, datatype, count)

status pointer to status object (MPI_Status*)
datatype data type of elements received (MPI_Datatype)

count pointer to variable in which to return result (int*)

I should only be called after status has been filled in by receive

I datatype should be same as used in receive

I sets count to the number of elements received
I note

I count specified in receive statement and message count can differ
I receive buffer must be big enough to hold incoming message
I memory in receive buffer after message count will not be altered

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 14



MPI_Get_count

MPI_Get_count(status, datatype, count)

status pointer to status object (MPI_Status*)
datatype data type of elements received (MPI_Datatype)

count pointer to variable in which to return result (int*)

I should only be called after status has been filled in by receive

I datatype should be same as used in receive

I sets count to the number of elements received
I note

I count specified in receive statement and message count can differ
I receive buffer must be big enough to hold incoming message
I memory in receive buffer after message count will not be altered

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 14



MPI_Get_count

MPI_Get_count(status, datatype, count)

status pointer to status object (MPI_Status*)
datatype data type of elements received (MPI_Datatype)

count pointer to variable in which to return result (int*)

I should only be called after status has been filled in by receive

I datatype should be same as used in receive

I sets count to the number of elements received
I note

I count specified in receive statement and message count can differ
I receive buffer must be big enough to hold incoming message
I memory in receive buffer after message count will not be altered

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 14



MPI_Get_count

MPI_Get_count(status, datatype, count)

status pointer to status object (MPI_Status*)
datatype data type of elements received (MPI_Datatype)

count pointer to variable in which to return result (int*)

I should only be called after status has been filled in by receive

I datatype should be same as used in receive

I sets count to the number of elements received

I note
I count specified in receive statement and message count can differ
I receive buffer must be big enough to hold incoming message
I memory in receive buffer after message count will not be altered

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 14



MPI_Get_count

MPI_Get_count(status, datatype, count)

status pointer to status object (MPI_Status*)
datatype data type of elements received (MPI_Datatype)

count pointer to variable in which to return result (int*)

I should only be called after status has been filled in by receive

I datatype should be same as used in receive

I sets count to the number of elements received
I note

I count specified in receive statement and message count can differ
I receive buffer must be big enough to hold incoming message
I memory in receive buffer after message count will not be altered

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 14



Example: getting the count: count.c

The following lines are added to proc 1:

int count;

MPI_Get_count(&status, MPI_CHAR, &count);

printf("source=%d tag=%d count=%d\n",

status.MPI_SOURCE, status.MPI_TAG, count);

This sets count to the actual number of characters (MPI_CHAR) received.

> mpiexec -n 4 ./count.exec

Proc 1 received: "Hello, from proc 0!"

source=0 tag=99 count=20

Note the null terminating character is counted.

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 15



Example: getting the count: count.c

The following lines are added to proc 1:

int count;

MPI_Get_count(&status, MPI_CHAR, &count);

printf("source=%d tag=%d count=%d\n",

status.MPI_SOURCE, status.MPI_TAG, count);

This sets count to the actual number of characters (MPI_CHAR) received.

> mpiexec -n 4 ./count.exec

Proc 1 received: "Hello, from proc 0!"

source=0 tag=99 count=20

Note the null terminating character is counted.

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 15



Example: getting the count: count.c

The following lines are added to proc 1:

int count;

MPI_Get_count(&status, MPI_CHAR, &count);

printf("source=%d tag=%d count=%d\n",

status.MPI_SOURCE, status.MPI_TAG, count);

This sets count to the actual number of characters (MPI_CHAR) received.

> mpiexec -n 4 ./count.exec

Proc 1 received: "Hello, from proc 0!"

source=0 tag=99 count=20

Note the null terminating character is counted.

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 15



Synchronization and deadlock
I a receive operation must block until a matching message arrives

I this can lead to deadlocks if you are not careful; see deadlock.c

#include<stdio.h>

#include<mpi.h>

int main() {

int message, rank;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

message = 173;

printf("Proc 0: was I supposed to do something?\n");

} else if (rank == 1) {

MPI_Recv(&message, 1, MPI_INT, 0, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Proc 1 received: %d\n", message);

}

MPI_Finalize();

}

mpiexec -n 4 ./deadlock.exec

Proc 0: was I supposed to do something?

^C[mpiexec@basie.local] Sending Ctrl-C to processes as requested

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 16



Synchronization and deadlock
I a receive operation must block until a matching message arrives
I this can lead to deadlocks if you are not careful; see deadlock.c

#include<stdio.h>

#include<mpi.h>

int main() {

int message, rank;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

message = 173;

printf("Proc 0: was I supposed to do something?\n");

} else if (rank == 1) {

MPI_Recv(&message, 1, MPI_INT, 0, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Proc 1 received: %d\n", message);

}

MPI_Finalize();

}

mpiexec -n 4 ./deadlock.exec

Proc 0: was I supposed to do something?

^C[mpiexec@basie.local] Sending Ctrl-C to processes as requested

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 16



Synchronization and deadlock
I a receive operation must block until a matching message arrives
I this can lead to deadlocks if you are not careful; see deadlock.c

#include<stdio.h>

#include<mpi.h>

int main() {

int message, rank;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

message = 173;

printf("Proc 0: was I supposed to do something?\n");

} else if (rank == 1) {

MPI_Recv(&message, 1, MPI_INT, 0, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Proc 1 received: %d\n", message);

}

MPI_Finalize();

}

mpiexec -n 4 ./deadlock.exec

Proc 0: was I supposed to do something?

^C[mpiexec@basie.local] Sending Ctrl-C to processes as requested

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 16



Synchronization and potential deadlock

I a send operation . . .

I may complete even if a matching receive operation has not been executed
I the message will be stored in a system buffer (channel)

I or it may block until a matching receive is available
I the message can then be copied directly from send buffer to recv buffer

I the choice is up to the MPI implementation

I the decision can be made differently at each send operation

I you cannot assume anything

I a correct program will behave correctly regardless of how this decision is made

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 17



Synchronization and potential deadlock

I a send operation . . .
I may complete even if a matching receive operation has not been executed

I the message will be stored in a system buffer (channel)

I or it may block until a matching receive is available
I the message can then be copied directly from send buffer to recv buffer

I the choice is up to the MPI implementation

I the decision can be made differently at each send operation

I you cannot assume anything

I a correct program will behave correctly regardless of how this decision is made

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 17



Synchronization and potential deadlock

I a send operation . . .
I may complete even if a matching receive operation has not been executed

I the message will be stored in a system buffer (channel)

I or it may block until a matching receive is available
I the message can then be copied directly from send buffer to recv buffer

I the choice is up to the MPI implementation

I the decision can be made differently at each send operation

I you cannot assume anything

I a correct program will behave correctly regardless of how this decision is made

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 17



Synchronization and potential deadlock

I a send operation . . .
I may complete even if a matching receive operation has not been executed

I the message will be stored in a system buffer (channel)

I or it may block until a matching receive is available
I the message can then be copied directly from send buffer to recv buffer

I the choice is up to the MPI implementation

I the decision can be made differently at each send operation

I you cannot assume anything

I a correct program will behave correctly regardless of how this decision is made

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 17



Synchronization and potential deadlock

I a send operation . . .
I may complete even if a matching receive operation has not been executed

I the message will be stored in a system buffer (channel)

I or it may block until a matching receive is available
I the message can then be copied directly from send buffer to recv buffer

I the choice is up to the MPI implementation

I the decision can be made differently at each send operation

I you cannot assume anything

I a correct program will behave correctly regardless of how this decision is made

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 17



Synchronization and potential deadlock

I a send operation . . .
I may complete even if a matching receive operation has not been executed

I the message will be stored in a system buffer (channel)

I or it may block until a matching receive is available
I the message can then be copied directly from send buffer to recv buffer

I the choice is up to the MPI implementation

I the decision can be made differently at each send operation

I you cannot assume anything

I a correct program will behave correctly regardless of how this decision is made

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 17



Synchronization and potential deadlock

I a send operation . . .
I may complete even if a matching receive operation has not been executed

I the message will be stored in a system buffer (channel)

I or it may block until a matching receive is available
I the message can then be copied directly from send buffer to recv buffer

I the choice is up to the MPI implementation

I the decision can be made differently at each send operation

I you cannot assume anything

I a correct program will behave correctly regardless of how this decision is made

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 17



Example may_deadlock.c: a potential deadlock

#include<stdio.h>

#include<mpi.h>

int main() {

int message, rank;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

message = 173;

MPI_Send(&message, 1, MPI_INT, 1, 9, MPI_COMM_WORLD);

} else if (rank == 1) {

printf("Proc 1: was I supposed to do something?\n");

}

MPI_Finalize();

}

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 18



Exchanging data

I suppose two processes wish to exchange some data
I proc 0 wants to send something to proc 1, and
I proc 1 wants to send something to proc 0

I very common scenario
I how to it safely?

I must be correct
I must not deadlock

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 19



Exchanging data

I suppose two processes wish to exchange some data
I proc 0 wants to send something to proc 1, and
I proc 1 wants to send something to proc 0

I very common scenario
I how to it safely?

I must be correct
I must not deadlock

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 19



Exchanging data

I suppose two processes wish to exchange some data
I proc 0 wants to send something to proc 1, and
I proc 1 wants to send something to proc 0

I very common scenario

I how to it safely?
I must be correct
I must not deadlock

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 19



Exchanging data

I suppose two processes wish to exchange some data
I proc 0 wants to send something to proc 1, and
I proc 1 wants to send something to proc 0

I very common scenario
I how to it safely?

I must be correct
I must not deadlock

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 19



Exchange 1: Incorrect: will deadlock!

I both procs try to receive before sending

int main() {

int rank, myNumber, otherNumber;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

myNumber = 10;

MPI_Recv(&otherNumber, 1, MPI_INT, 1, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Send(&myNumber, 1, MPI_INT, 1, 9, MPI_COMM_WORLD);

} else if (rank == 1) {

myNumber = 20;

MPI_Recv(&otherNumber, 1, MPI_INT, 0, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Send(&myNumber, 1, MPI_INT, 0, 9, MPI_COMM_WORLD);

}

printf("Process %d: received %d\n", rank, otherNumber);

MPI_Finalize();

}

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 20



Exchange 2: Unsafe: may deadlock!

I both procs send before receiving — what if MPI tries to execute both sends synchronously?

int main() {

int rank, myNumber, otherNumber;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

myNumber = 10;

MPI_Send(&myNumber, 1, MPI_INT, 1, 99, MPI_COMM_WORLD);

MPI_Recv(&otherNumber, 1, MPI_INT, 1, 99, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

} else if (rank == 1) {

myNumber = 20;

MPI_Send(&myNumber, 1, MPI_INT, 0, 99, MPI_COMM_WORLD);

MPI_Recv(&otherNumber, 1, MPI_INT, 0, 99, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

printf("Process %d: received %d\n", rank, otherNumber);

MPI_Finalize();

}

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 21



Exchange 3: Correct: procs alternate

I one proc sends, then receives; the other proc receives, then sends

int main() {

int rank, myNumber, otherNumber;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

myNumber = 10;

MPI_Send(&myNumber, 1, MPI_INT, 1, 99, MPI_COMM_WORLD);

MPI_Recv(&otherNumber, 1, MPI_INT, 1, 99, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

} else if (rank == 1) {

myNumber = 20;

MPI_Recv(&otherNumber, 1, MPI_INT, 0, 99, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Send(&myNumber, 1, MPI_INT, 0, 99, MPI_COMM_WORLD);

}

printf("Process %d: received %d\n", rank, otherNumber);

MPI_Finalize();

}

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 22



Exchanging with MPI_Sendrecv

I this situation is so common, MPI provides a function to deal with it

I MPI_Sendrecv combines one send and one receive operation into a single command

I both operations execute concurrently

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 23



MPI_Sendrecv

MPI_Sendrecv(sbuf, scount, stype, dest, stag,

rbuf, rcount, rtype, source, rtag,

comm, status)

sbuf address of send buffer (void*)
scount number of elements in send buffer (int)
stype data type of elements in sbuf (MPI_Datatype)
dest rank of destination process (int)
stag integer to attach to message envelope (int)
rbuf address of receive buffer (void*)

rcount length of receive buffer (int)
rtype data type of elements to be received (MPI_Datatype)
source rank of sending process (int)
rtag tag of message to receive (int)
comm communicator (MPI_Comm)

status pointer to status object for receive (MPI_Status*)
S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 24



Semantics and uses of MPI_Sendrecv

I combines a send statement and a receive statement into one statement

I both operations post simultaneously

I as if two threads are spawned, one to manage the send, the other the receive

I the operation completes only after both the send and receive complete

I solves the deadlocking problem for data exchange
I cyclic exchange

I 0→ 1→ 2→ 3→ 0
I process of rank i

I sends to i + 1 (modulo numProcs)
I receives from i − 1 (modulo numProcs)

I shift
I 0→ 1→ 2→ 3
I proc 0 only sends
I proc nprocs− 1 only receives
I or use MPI_PROC_NULL

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 25



Semantics and uses of MPI_Sendrecv

I combines a send statement and a receive statement into one statement

I both operations post simultaneously

I as if two threads are spawned, one to manage the send, the other the receive

I the operation completes only after both the send and receive complete

I solves the deadlocking problem for data exchange
I cyclic exchange

I 0→ 1→ 2→ 3→ 0
I process of rank i

I sends to i + 1 (modulo numProcs)
I receives from i − 1 (modulo numProcs)

I shift
I 0→ 1→ 2→ 3
I proc 0 only sends
I proc nprocs− 1 only receives
I or use MPI_PROC_NULL

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 25



Semantics and uses of MPI_Sendrecv

I combines a send statement and a receive statement into one statement

I both operations post simultaneously

I as if two threads are spawned, one to manage the send, the other the receive

I the operation completes only after both the send and receive complete

I solves the deadlocking problem for data exchange
I cyclic exchange

I 0→ 1→ 2→ 3→ 0
I process of rank i

I sends to i + 1 (modulo numProcs)
I receives from i − 1 (modulo numProcs)

I shift
I 0→ 1→ 2→ 3
I proc 0 only sends
I proc nprocs− 1 only receives
I or use MPI_PROC_NULL

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 25



Semantics and uses of MPI_Sendrecv

I combines a send statement and a receive statement into one statement

I both operations post simultaneously

I as if two threads are spawned, one to manage the send, the other the receive

I the operation completes only after both the send and receive complete

I solves the deadlocking problem for data exchange
I cyclic exchange

I 0→ 1→ 2→ 3→ 0
I process of rank i

I sends to i + 1 (modulo numProcs)
I receives from i − 1 (modulo numProcs)

I shift
I 0→ 1→ 2→ 3
I proc 0 only sends
I proc nprocs− 1 only receives
I or use MPI_PROC_NULL

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 25



Semantics and uses of MPI_Sendrecv

I combines a send statement and a receive statement into one statement

I both operations post simultaneously

I as if two threads are spawned, one to manage the send, the other the receive

I the operation completes only after both the send and receive complete

I solves the deadlocking problem for data exchange

I cyclic exchange
I 0→ 1→ 2→ 3→ 0
I process of rank i

I sends to i + 1 (modulo numProcs)
I receives from i − 1 (modulo numProcs)

I shift
I 0→ 1→ 2→ 3
I proc 0 only sends
I proc nprocs− 1 only receives
I or use MPI_PROC_NULL

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 25



Semantics and uses of MPI_Sendrecv

I combines a send statement and a receive statement into one statement

I both operations post simultaneously

I as if two threads are spawned, one to manage the send, the other the receive

I the operation completes only after both the send and receive complete

I solves the deadlocking problem for data exchange
I cyclic exchange

I 0→ 1→ 2→ 3→ 0
I process of rank i

I sends to i + 1 (modulo numProcs)
I receives from i − 1 (modulo numProcs)

I shift
I 0→ 1→ 2→ 3
I proc 0 only sends
I proc nprocs− 1 only receives
I or use MPI_PROC_NULL

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 25



Semantics and uses of MPI_Sendrecv

I combines a send statement and a receive statement into one statement

I both operations post simultaneously

I as if two threads are spawned, one to manage the send, the other the receive

I the operation completes only after both the send and receive complete

I solves the deadlocking problem for data exchange
I cyclic exchange

I 0→ 1→ 2→ 3→ 0
I process of rank i

I sends to i + 1 (modulo numProcs)
I receives from i − 1 (modulo numProcs)

I shift
I 0→ 1→ 2→ 3
I proc 0 only sends
I proc nprocs− 1 only receives
I or use MPI_PROC_NULL

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 25



Exchange 4: Correct: MPI_Sendrecv

int main() {

int rank, myNumber, otherNumber;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

myNumber = 10;

MPI_Sendrecv(&myNumber, 1, MPI_INT, 1, 99, &otherNumber, 1, MPI_INT, 1, 99,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

} else if (rank == 1) {

myNumber = 20;

MPI_Sendrecv(&myNumber, 1, MPI_INT, 0, 99, &otherNumber, 1, MPI_INT, 0, 99,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

printf("Process %d: received %d\n", rank, otherNumber);

MPI_Finalize();

}

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 26



Cyclic exchange: cycle.c

#include<stdio.h>

#include<mpi.h>

int main() {

int nprocs, rank;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

const int right = (rank + 1)%nprocs, left = (rank + nprocs - 1)%nprocs;

int rbuf, sbuf = 100 + rank;

MPI_Sendrecv(&sbuf, 1, MPI_INT, right, 0, &rbuf, 1, MPI_INT, left, 0,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Proc %d: received %d\n", rank, rbuf);

MPI_Finalize();

}

I note use of rank + nprocs - 1 to avoid a negative argument to modulo operator

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 27



Shift exchange: shift.c

#include<stdio.h>

#include<mpi.h>

int main() {

int nprocs, rank;

MPI_Init(NULL, NULL);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

const int right = rank < nprocs - 1 ? rank + 1 : MPI_PROC_NULL,

left = rank > 0 ? rank - 1 : MPI_PROC_NULL;

int rbuf, sbuf = 100 + rank;

MPI_Sendrecv(&sbuf, 1, MPI_INT, right, 0, &rbuf, 1, MPI_INT, left, 0,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

if (rank > 0) printf("Proc %d: received %d\n", rank, rbuf);

MPI_Finalize();

}

I a send or receive to MPI_PROC_NULL is a no-op
S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 28



Semantics: Non-interaction with collectives

I an MPI program can use both point-to-point and collective operations
I point-to-point and collective operations exist in two separate universes

I there is no “matching” between p2p and collective operations
I a message sent by a p2p can never be received by a collective
I a message sent by a collective can never be received by a p2p

S.F. Siegel � CISC 372: Parallel Computing � Point-to-point 29


