CISC 372: Parallel Computing

Data Distribution and Nearest Neighbor Communication

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

Distributing arrays

S.F. Siegel 3

CISC 372: Parallel Computing

<o Distribution

Distributing arrays

The general problem

S.F. Siegel o CISC 372: Parallel Computing o Distribution

Distributing arrays

The general problem
> given
> an array a of length n

> elements of a can be of any type
» the important point is that the elements are ordered
> indices (called global indices) run from 0 to n — 1

S.F. Siegel o CISC 372: Parallel Computing < Distribution 2

Distributing arrays

The general problem
> given
> an array a of length n

> elements of a can be of any type
» the important point is that the elements are ordered
> indices (called global indices) run from 0 to n — 1

» the number of processes p
» processes are numbered 0,1,...,p—1

S.F. Siegel o CISC 372: Parallel Computing < Distribution 2

Distributing arrays

The general problem
> given
> an array a of length n

> elements of a can be of any type
» the important point is that the elements are ordered
> indices (called global indices) run from 0 to n — 1

» the number of processes p
» processes are numbered 0,1,...,p—1

» determine a way to distribute the n elements among the p processes

S.F. Siegel < CISC 372: Parallel Computing < Distribution 2

Distributing arrays

The general problem
> given
> an array a of length n

> elements of a can be of any type
» the important point is that the elements are ordered
> indices (called global indices) run from 0 to n — 1

» the number of processes p
» processes are numbered 0,1,...,p—1
» determine a way to distribute the n elements among the p processes
» for example, cyclic distribution

S.F. Siegel < CISC 372: Parallel Computing < Distribution 2

Distributing arrays

The general problem
> given
> an array a of length n

> elements of a can be of any type
» the important point is that the elements are ordered
> indices (called global indices) run from 0 to n — 1

» the number of processes p
» processes are numbered 0,1,...,p—1
» determine a way to distribute the n elements among the p processes
» for example, cyclic distribution
» each approach has advantages and disadvantages

> e.g., cyclic distribution effective for embarrasingly parallel problems with clusters of
longer-running tasks, like SAT

S.F. Siegel < CISC 372: Parallel Computing < Distribution 2

Distributing arrays

The general problem
> given
> an array a of length n

> elements of a can be of any type
» the important point is that the elements are ordered
> indices (called global indices) run from 0 to n — 1

» the number of processes p
» processes are numbered 0,1,...,p—1
» determine a way to distribute the n elements among the p processes
» for example, cyclic distribution
» each approach has advantages and disadvantages
> e.g., cyclic distribution effective for embarrasingly parallel problems with clusters of
longer-running tasks, like SAT

» different approaches are appropriate in different contexts

S.F. Siegel < CISC 372: Parallel Computing < Distribution 2

Distributing arrays

The general problem
> given
> an array a of length n

> elements of a can be of any type
» the important point is that the elements are ordered
> indices (called global indices) run from 0 to n — 1

» the number of processes p
» processes are numbered 0,1,...,p—1

» determine a way to distribute the n elements among the p processes
» for example, cyclic distribution

» each approach has advantages and disadvantages
> e.g., cyclic distribution effective for embarrasingly parallel problems with clusters of
longer-running tasks, like SAT

» different approaches are appropriate in different contexts

» in all cases: need easy way to convert between global and local views

S.F. Siegel < CISC 372: Parallel Computing < Distribution 2

Distribution example with p =3, n = 10

S.F. Siegel o CISC 372: Parallel Computing <o Distribution 3

Distribution example with p =3, n = 10
gobalindexx @ 1 2 3 4 5

§)
owner: @ @ @ 1 1 1 2
local index: @ 1 2 @ 1 2 0

=N

NN 00

WIN O

» the sequential program has an array of length 10
» the parallel program has 3 processes
» proc 0 has an array of length 3
> 0:0,1:1,2: 2
» proc 1 has an array of length 3
> 0:3,1:4,2:5
» proc 2 has an array of length 4
> 0:6,1:7,2:8,3:9

S.F. Siegel < CISC 372: Parallel Computing < Distribution 3

Block Distribution Solutions

S.F. Siegel <o CISC 372: Parallel Computing <o Distribution

Block Distribution Solutions

» each process owns a contiguous slice of the global array

S.F. Siegel o CISC 372: Parallel Computing o Distribution 4

Block Distribution Solutions

» each process owns a contiguous slice of the global array
» example

» rank 0 owns elements 0,1,...4
» rank 1 owns 5,6

» rank 2 owns nothing

» rank 3 owns 7,8,9

S.F. Siegel o CISC 372: Parallel Computing < Distribution 4

Block Distribution Solutions

» each process owns a contiguous slice of the global array
» example
» rank 0 owns elements 0,1,...4
» rank 1 owns 5,6
» rank 2 owns nothing
» rank 3 owns 7,8,9
» the set of elements owned by process i can be specified by two numbers:

» the number of elements owned by ¢
> the first global index owned by @

S.F. Siegel o CISC 372: Parallel Computing < Distribution 4

Block Distribution Solutions

» each process owns a contiguous slice of the global array
» example

» rank 0 owns elements 0,1,...4
» rank 1 owns 5,6

» rank 2 owns nothing

» rank 3 owns 7,8,9

» the set of elements owned by process i can be specified by two numbers:

» the number of elements owned by ¢
> the first global index owned by @

» main advantage
» many applications require frequent nearest neighbor communication

S.F. Siegel o CISC 372: Parallel Computing < Distribution 4

Block Distribution Solutions

» each process owns a contiguous slice of the global array
» example

» rank 0 owns elements 0,1,...4
» rank 1 owns 5,6

» rank 2 owns nothing

» rank 3 owns 7,8,9

» the set of elements owned by process i can be specified by two numbers:

» the number of elements owned by ¢
> the first global index owned by @

» main advantage

» many applications require frequent nearest neighbor communication
> e.g. to update afi], might need to read a[i — 1] and a[i + 1]

S.F. Siegel < CISC 372: Parallel Computing < Distribution 4

Block Distribution Solutions

» each process owns a contiguous slice of the global array
» example
» rank 0 owns elements 0,1,...4
» rank 1 owns 5,6
» rank 2 owns nothing
» rank 3 owns 7,8,9
» the set of elements owned by process i can be specified by two numbers:
» the number of elements owned by ¢
> the first global index owned by @
» main advantage
» many applications require frequent nearest neighbor communication
> e.g. to update afi], might need to read a[i — 1] and a[i + 1]
> increases probability that a[i — 1] and a[i + 1] will live on the same process as ali]

S.F. Siegel < CISC 372: Parallel Computing < Distribution 4

Block Distribution Solutions

» each process owns a contiguous slice of the global array
» example
» rank 0 owns elements 0,1,...4
» rank 1 owns 5,6

» rank 2 owns nothing
» rank 3 owns 7,8,9

» the set of elements owned by process i can be specified by two numbers:
» the number of elements owned by ¢
> the first global index owned by @
» main advantage
» many applications require frequent nearest neighbor communication
e.g.: to update a[i], might need to read a[i — 1] and ali + 1]
increases probability that a[i — 1] and a[i 4+ 1] will live on the same process as ali]
communication will be minimized
cyclic distribution is very ineffective when nearest neighbor communication is required!

vVVvyVvyy

S.F. Siegel < CISC 372: Parallel Computing < Distribution 4

Additional Desirable Qualities of Block Distribution Solutions

S.F. Siegel o CISC 372: Parallel Computing <o Distribution 5

Additional Desirable Qualities of Block Distribution Solutions

» load balancing

S.F. Siegel o CISC 372: Parallel Computing <o Distribution 5

Additional Desirable Qualities of Block Distribution Solutions

» load balancing

» ideally, each process will own the same number of elements

S.F. Siegel o CISC 372: Parallel Computing <o Distribution 5

Additional Desirable Qualities of Block Distribution Solutions

» load balancing
» ideally, each process will own the same number of elements

» this is only possible if p|n

> read “p divides n" (evenly)
» means there exists an integer k such that n = pk

S.F. Siegel o CISC 372: Parallel Computing < Distribution 5

Additional Desirable Qualities of Block Distribution Solutions

» load balancing
» ideally, each process will own the same number of elements

» this is only possible if p|n

> read “p divides n" (evenly)

P> means there exists an integer k such that n = pk
» additional requirement:

> if p|n, all processes own n/p elements

S.F. Siegel o CISC 372: Parallel Computing < Distribution 5

Additional Desirable Qualities of Block Distribution Solutions

» load balancing
» ideally, each process will own the same number of elements

» this is only possible if p|n

> read “p divides n" (evenly)

P> means there exists an integer k such that n = pk
» additional requirement:

> if p|n, all processes own n/p elements
» otherwise, the number of elements owned by two different processes can differ by at most 1

S.F. Siegel o CISC 372: Parallel Computing < Distribution 5

Additional Desirable Qualities of Block Distribution Solutions

» load balancing
» ideally, each process will own the same number of elements
» this is only possible if p|n
> read “p divides n" (evenly)
» means there exists an integer k such that n = pk
» additional requirement:

> if p|n, all processes own n/p elements

» otherwise, the number of elements owned by two different processes can differ by at most 1
> some processes have |n/p| elements (“small”)
» others have [n/p] = elements ("big")

Note:
» | x| = the greatest integer less than or equal to z (i.e., round down)

» [x] = the least integer greater than or equal to x (i.e., round up)

S.F. Siegel < CISC 372: Parallel Computing < Distribution 5

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:

S.F. Siegel o CISC 372: Parallel Computing <o Distribution 6

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:
1. FIRST(r)
» given a rank r, returns the first global index owned by proc r

S.F. Siegel o CISC 372: Parallel Computing < Distribution 6

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:
1. FIRST(r)
» given a rank r, returns the first global index owned by proc r
2. NUM_OWNED(r)
» given a rank r, returns the number of elements owned by r

S.F. Siegel o CISC 372: Parallel Computing < Distribution 6

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:
1. FIRST(r)
» given a rank r, returns the first global index owned by proc r
2. NUM_OWNED(r)
» given a rank r, returns the number of elements owned by r
3. OWNER(§)
> given a global index j, returns the rank of the process owning j

S.F. Siegel o CISC 372: Parallel Computing < Distribution 6

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:
1. FIRST(r)
» given a rank r, returns the first global index owned by proc r

2. NUM_OWNED(r)

» given a rank r, returns the number of elements owned by r
3. OWNER(j)

> given a global index j, returns the rank of the process owning j
4. LOCAL_INDEX(j)

» given global index j, returns the local index of element j

S.F. Siegel o CISC 372: Parallel Computing < Distribution 6

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:
1. FIRST(r)
» given a rank r, returns the first global index owned by proc r

2. NUM_OWNED(r)

» given a rank r, returns the number of elements owned by r
3. OWNER(j)

> given a global index j, returns the rank of the process owning j
4. LOCAL_INDEX(j)

» given global index j, returns the local index of element j

» using these, you can easily convert between local and global view

S.F. Siegel < CISC 372: Parallel Computing < Distribution 6

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:
1. FIRST(r)
» given a rank r, returns the first global index owned by proc r

2. NUM_OWNED(r)

» given a rank r, returns the number of elements owned by r
3. OWNER(j)

> given a global index j, returns the rank of the process owning j
4. LOCAL_INDEX(j)

» given global index j, returns the local index of element j

» using these, you can easily convert between local and global view
» example: what is the global index corresponding to local index i on proc r7?

S.F. Siegel < CISC 372: Parallel Computing < Distribution 6

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:
1. FIRST(r)
» given a rank r, returns the first global index owned by proc r

2. NUM_OWNED(r)

» given a rank r, returns the number of elements owned by r
3. OWNER(j)

> given a global index j, returns the rank of the process owning j
4. LOCAL_INDEX(j)

» given global index j, returns the local index of element j

» using these, you can easily convert between local and global view
» example: what is the global index corresponding to local index i on proc r7?
> answer: i + FIRST(r)

S.F. Siegel < CISC 372: Parallel Computing < Distribution 6

The easy case: p|n

1. FIRST(r) = r(n/p)
2. NUM_OWNED(r) = n/p
3. OWNER(j) = |j/(n/p)]
4. LOCAL_INDEX(j) = j%(n/p)
Example: n =12, p = 3: each proc gets n/p = 4 elements:

global ‘ 01 23 45 6 7 8 9 10 11
owner (O 0 O O 1 1 1 1 2 2 2 2
local | O 1 2 3 0 1 2 3 0 1 2 3

See blockl.c, blockl_simp_mpi.c.

S.F. Siegel < CISC 372: Parallel Computing < Distribution 7

The general case: the standard block distribution scheme

» FIRST(r) = |rn/p]
» NUM_OWNED(r) = FIRST(r 4 1) — FIRST(r)
> OWNER(j) = |(p(j +1) — 1)/n)]
» LOCAL_INDEX(j) = j — FIRST(OWNER(j))
Intuition:
» If p divides n evenly, each proc gets n/p items.
» The first global index for rank i will be i(n/p) = in/p.

» Use same formula for first for the general case, but take floor.

S.F. Siegel o CISC 372: Parallel Computing < Distribution 8

The general case: the standard block distribution scheme

» FIRST(r) = |rn/p]
» NUM_OWNED(r) = FIRST(r 4+ 1) — FIRST(r)
> OWNER(j) = |(p(j +1) — 1)/n)]
» LOCAL_INDEX(j) = j — FIRST(OWNER(j))
Intuition:
» If p divides n evenly, each proc gets n/p items.
» The first global index for rank i will be i(n/p) = in/p.
» Use same formula for first for the general case, but take floor.

Example: n =10, p = 3:

S.F. Siegel o CISC 372: Parallel Computing < Distribution 8

The general case: the standard block distribution scheme

» FIRST(r) = |rn/p]

» NUM_OWNED(r) = FIRST(r 4+ 1) — FIRST(r)

> OWNER(j) = [(p(j + 1) — 1)/n]

» LOCAL_INDEX(j) = j — FIRST(OWNER(j))
Intuition:

» If p divides n evenly, each proc gets n/p items.

» The first global index for rank i will be i(n/p) = in/p.

» Use same formula for first for the general case, but take floor.
Example: n =10, p = 3:

> 0: first=0

S.F. Siegel o CISC 372: Parallel Computing < Distribution 8

The general case: the standard block distribution scheme

» FIRST(r) = |rn/p]

» NUM_OWNED(r) = FIRST(r 4+ 1) — FIRST(r)

> OWNER(j) = [(p(j + 1) — 1)/n]

» LOCAL_INDEX(j) = j — FIRST(OWNER(j))
Intuition:

» If p divides n evenly, each proc gets n/p items.

» The first global index for rank i will be i(n/p) = in/p.

» Use same formula for first for the general case, but take floor.
Example: n =10, p = 3:

> 0: first=0

> 1: first = |10/3] =3

S.F. Siegel o CISC 372: Parallel Computing < Distribution 8

The general case: the standard block distribution scheme

» FIRST(r) = |rn/p]

» NUM_OWNED(r) = FIRST(r 4+ 1) — FIRST(r)

> OWNER(j) = [(p(j + 1) — 1)/n]

» LOCAL_INDEX(j) = j — FIRST(OWNER(j))
Intuition:

» If p divides n evenly, each proc gets n/p items.

» The first global index for rank i will be i(n/p) = in/p.

» Use same formula for first for the general case, but take floor.
Example: n =10, p = 3:

> 0: first=0

> 1: first = |10/3] =3

> 2: first=[20/3| =6

S.F. Siegel o CISC 372: Parallel Computing < Distribution 8

The general case: the standard block distribution scheme

» FIRST(r) = |rn/p]

» NUM_OWNED(r) = FIRST(r 4+ 1) — FIRST(r)

> OWNER(j) = [(p(j + 1) — 1)/n]

» LOCAL_INDEX(j) = j — FIRST(OWNER(j))
Intuition:

» If p divides n evenly, each proc gets n/p items.

» The first global index for rank i will be i(n/p) = in/p.

» Use same formula for first for the general case, but take floor.
Example: n =10, p = 3:

> 0: first=0

> 1: first = |10/3] =3

> 2: first=[20/3| =6

» 3: first = |30/3] =10=n

S.F. Siegel o CISC 372: Parallel Computing < Distribution 8

The general case: the standard block distribution scheme

» FIRST(r) = |rn/p]

» NUM_OWNED(r) = FIRST(r 4+ 1) — FIRST(r)

> OWNER(j) = [(p(j + 1) — 1)/n]

» LOCAL_INDEX(j) = j — FIRST(OWNER(j))
Intuition:

» If p divides n evenly, each proc gets n/p items.

» The first global index for rank i will be i(n/p) = in/p.

» Use same formula for first for the general case, but take floor.
Example: n =10, p = 3:

> 0: first=0

> 1: first = |10/3] =3

> 2: first=[20/3| =6

» 3: first = |30/3] =10=n

> in general FIRST(p) = n; there is no proc p but this is needed to compute NUM_OWNED(p

S.F. Siegel o C 372: Parallel Computing Distribution

_1)

Work out these examples

L n=14,p=4 FIRST(r) = |rn/p]
2.n=14,p=5 NUM_OWNED(r) = FIRST(r + 1) — FIRST(r)
3. m=2p=5 OWNER(j) = | (p(j + 1) — 1)/n]
4. n=3,p=>5 LOCAL_INDEX(j) = j — FIRST(OWNER(4))
5. n=18 p=4
6. n=18, p=>5
7. n=1p=4
8. n=10,p=4
Codes:

» blockl_mpi.c
» glob2loc.c
» loc2glob.c

S.F. Siegel o CISC 372: Parallel Computing < Distribution 9

Example: blockl.c

» sums the elements of an array of length IV

#include <stdio.h>
#ifndef N
#define N 20
#endif
unsigned int a[N];
int main() {
unsigned long sum = O;
for (int i=0; i<N; i++)
ali] = ix*i;
for (int i=0; i<N; i++)
sum += al[il;
printf("sum = %1d\n", sum);

S.F. Siegel o CISC 372: Parallel Computing < Distribution

Parallel version: blockl_mpi.c

// Standard block distribution scheme: N items distributed over nprocs procs
#define FIRST(r) ((N)*(r)/nprocs)

#define NUM_OWNED(r) (FIRST((r)+1) - FIRST(r))

#define OWNER(j) ((nprocs*((j)+1)-1)/(N))

#define LOCAL_INDEX(J) ((j)-FIRST(OWNER(j)))

int main() {
int nprocs, rank; // number of procs, rank of this proc
int first; // global index of first cell owned by this proc
int n_local; // number of cells owned by this proc

MPI_Init (NULL,NULL);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

first = FIRST(rank);

n_local = NUM_OWNED(rank) ;
#ifdef DEBUG

printf ("Rank %d: first=Yd, n_local=Yd\n", rank, first, n_local);
#endif

S.F. Siegel < CISC 372: Parallel Computing < Distribution 11

Parallel version: blockl_mpi.c, cont.

unsigned int a[n_locall; // local block of global array a
unsigned long sum = 0, global_sum;

for (int i=0; i<n_local; i++) {
const int j = first + i; // convert from local to global index
alil = j * j;
}
for (int i=0; i<n_local; i++)
sum += alil;
MPI_Reduce(&sum, &global_sum, 1, MPI_UNSIGNED_LONG, MPI_SUM, O, MPI_COMM_WORLD);
MPI_Finalize();
if (rank == 0) printf("sum = %1ld\n", global_sum);

S.F. Siegel

< CISC 372: Parallel Computing < Distribution 12

Nearest neighbor communication and Pascal’s triangle

Usual representation:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
Computer representation:
0 0001 0 O0O0CTO0
0 001 01 0 0O
0 01 020100
0 1.0 3 03 010
1 0 4 0 6 0 4 0 1

S.F. Siegel o CISC 372: Parallel Computing < Distribution 13

Pascal: sequential implementation

» see pascal.c
» two arrays are used

» one always holds the current value
» the other holds the previous value

» note use of pointer swapping

S.F. Siegel o CISC 372: Parallel Computing < Distribution

14

Pascal: parallel implementation with MPI

» block distribute arrays
» problem: how to update left and right endpoints of each block?
» these depend on values on neighboring procs
» not embarrassingly parallel — communication is required
» solution: ghost cells
» each proc will have two extra cells
> one on left to mirror value of left neighbor's right endpoint
» one on right to mirror value of right neighbor's left endpoint
> these are not owned by this proc—they duplicate information
P at each iteration:
> print
» exchange ghost cells
» perform the local update

S.F. Siegel < CISC 372: Parallel Computing < Distribution 15

Pascal: ghost cell exchange

T6[Tolalo}" ri[elelola}” fo[alelis}
0 53 N 3 N (1 3 1

» the length of the array on proc r is NUM_OWNED(r) + 2
» indexes are shifted up by 1

» see pascal_mpi.c
S.F. Siegel < CISC 372: Parallel Computing < Distribution 16

Pascal: printing

» all output is funneled through rank 0

» proc 0 is the only proc that prints
> exception: debugging (doesn't have to look perfect)
» this is the only reliable way to get the output right
» with tools currently at your disposable
» MPI's I/O commands are the real “right” way

S.F. Siegel < CISC 372: Parallel Computing < Distribution 17

Pascal: printing

» all output is funneled through rank 0

» proc 0 is the only proc that prints
> exception: debugging (doesn't have to look perfect)
» this is the only reliable way to get the output right

» with tools currently at your disposable
» MPI's I/O commands are the real “right” way

» all procs with positive rank:
» send their (non-ghost) data to rank 0

S.F. Siegel < CISC 372: Parallel Computing < Distribution 17

Pascal: printing

» all output is funneled through rank 0

» proc 0 is the only proc that prints
> exception: debugging (doesn't have to look perfect)
» this is the only reliable way to get the output right

» with tools currently at your disposable
» MPI's I/O commands are the real “right” way

» all procs with positive rank:

» send their (non-ghost) data to rank 0
» proc O:

> prints its own block (excluding ghosts)

S.F. Siegel < CISC 372: Parallel Computing < Distribution 17

Pascal: printing

» all output is funneled through rank 0

» proc 0 is the only proc that prints
> exception: debugging (doesn't have to look perfect)
» this is the only reliable way to get the output right

» with tools currently at your disposable
» MPI's I/O commands are the real “right” way
» all procs with positive rank:
» send their (non-ghost) data to rank 0
» proc O:

> prints its own block (excluding ghosts)

» loops ¢ = 0..nprocs — 1
> receives a block from proc i into the “scratch” buffer
P prints that block

S.F. Siegel < CISC 372: Parallel Computing < Distribution 17

Pascal: printing

» all output is funneled through rank 0

» proc 0 is the only proc that prints
> exception: debugging (doesn't have to look perfect)
» this is the only reliable way to get the output right

» with tools currently at your disposable
» MPI's I/O commands are the real “right” way

» all procs with positive rank:
» send their (non-ghost) data to rank 0
» proc O:

> prints its own block (excluding ghosts)

» loops ¢ = 0..nprocs — 1
> receives a block from proc i into the “scratch” buffer
P prints that block

» prints a newline and returns

S.F. Siegel < CISC 372: Parallel Computing < Distribution 17

1-dimensional Diffusion

» Problem

»> a metal rod of unit length is initially 100°

P a block of ice is placed at either end to keep ends at 0°

> heat diffuses out of rod

> find the temperature at each point on the rod at each time

S.F. Siegel o CISC 372: Parallel Computing < Distribution 18

1-dimensional Diffusion

» Problem

»> a metal rod of unit length is initially 100°

P a block of ice is placed at either end to keep ends at 0°

> heat diffuses out of rod

> find the temperature at each point on the rod at each time
» flow of heat governed by the diffusion equation

» a simple differential equation
> u = u(t,x) temperature function
ou 0%u
ot~ “ox?
» « is a constant depending on the material
» thermal diffusivity

S.F. Siegel o CISC 372: Parallel Computing < Distribution 18

Discretization

» divide rod into n discrete pieces of length Ax
» let u[i] be the temperature of the it piece
» loop over time

» At = duration of one discrete time step

» update formula comes from discrete approximations to the first and second derivatives
» continuous

ou 0%u
ot~ “oa?
» discrete
u_newl[i] = ul[i] + kx(ul[i+1] + ul[i-1] - 2*u[i])

> k= aAt/Az?
» need 0 < k < 0.5 for convergence

S.F. Siegel < CISC 372: Parallel Computing < Distribution 19

Implementations

» diffuseld.c, diffuseld_mpi.c

» plain text output
> all output funneled through process 0
> similar to Pascal

» diffusionld.c, diffusionld_mpi.c
» uses ANIM and MPIANIM libraries for graphical output

S.F. Siegel < CISC 372: Parallel Computing < Distribution 20

2-d Diffusion

» a metal unit square
> initially 100°
> temperature on perimeter kept at 0°

» u = u(x,y,t) temperature function

ou (82u
=«

» 2d diffusion equation

ot 0z2
» discretization

u_new[i] [j] = wuli]l[j]
+ kx(uli+1] [j1 + uli-11[j]

|
Oy?

+ uli] [j+1] + ulil [j-1] - 4xulil[j1);

S.F. Siegel < CISC 372: Parallel Computing < Distribution 21

Parallelization of diffusion2d

» how to distribute the 2d spatial domain?

S.F. Siegel o CISC 372: Parallel Computing o Distribution

22

Parallelization of diffusion2d

» how to distribute the 2d spatial domain?
» ‘“striped” decompositions

S.F. Siegel o CISC 372: Parallel Computing < Distribution

22

Parallelization of diffusion2d

» how to distribute the 2d spatial domain?

» ‘“striped” decompositions
» apply the Standard Block Distribution Scheme to the columns

S.F. Siegel o CISC 372: Parallel Computing < Distribution 22

Parallelization of diffusion2d

» how to distribute the 2d spatial domain?

» ‘“striped” decompositions
» apply the Standard Block Distribution Scheme to the columns

» “column distribution”

» each process gets a certain number of x values
> a ghost cell column on the left and on the right
» exchange ghost columns after each time step

S.F. Siegel < CISC 372: Parallel Computing < Distribution 22

Parallelization of diffusion2d

» how to distribute the 2d spatial domain?

» ‘“striped” decompositions
» apply the Standard Block Distribution Scheme to the columns
» “column distribution”
» each process gets a certain number of x values
> a ghost cell column on the left and on the right
» exchange ghost columns after each time step
» apply the Standard Block Distribution Scheme to the rows

» “row distribution”
> .

S.F. Siegel < CISC 372: Parallel Computing < Distribution 22

2d Diffusion: column distribution

L [
.
L L L
.
L L
L L
L [
.
L L L
.
L L
- - ‘e - ‘e

T 23

2d Diffusion: row distribution

24

2d Diffusion: checkerboard decomposition

» 4 ghost regions for each process

» 4 exchanges: up, down, left, right

S.F. Siegel

CISC 372: Parallel Computing

["
] ° "
tealaata ot e alaala ot
..................
["
] ° "
tealaata ot e alaala ot
Distribution 25

Analysis of Diffusion2d Decomposition

S.F. Siegel o CISC 372: Parallel Computing <o Distribution 26

Analysis of Diffusion2d Decomposition

P> assume an n X n grid, p processes

S.F. Siegel o CISC 372: Parallel Computing <o Distribution 26

Analysis of Diffusion2d Decomposition

P> assume an n X n grid, p processes
» measure the total “amount” of communication
» roughly, the total number of ghost cells

S.F. Siegel o CISC 372: Parallel Computing < Distribution 26

Analysis of Diffusion2d Decomposition

P> assume an n X n grid, p processes

» measure the total “amount” of communication
» roughly, the total number of ghost cells

» striped

» on each process, there are 2n ghost cells
> total number of ghost cells: 2np

S.F. Siegel o CISC 372: Parallel Computing < Distribution 26

Analysis of Diffusion2d Decomposition

P> assume an n X n grid, p processes

» measure the total “amount” of communication
» roughly, the total number of ghost cells

» striped
» on each process, there are 2n ghost cells
» total number of ghost cells: 2np

» checkerboard

P assume p is a perfect square!

> the p processes are arranged in a grid of dimension /p X /p
» each process has 4(n/,/p) ghost cells

> total number of ghost cells: 4(np/\/p) = 4n/p

S.F. Siegel < CISC 372: Parallel Computing < Distribution 26

Analysis of Diffusion2d Decomposition

P> assume an n X n grid, p processes

» measure the total “amount” of communication
» roughly, the total number of ghost cells

» striped
» on each process, there are 2n ghost cells
» total number of ghost cells: 2np

» checkerboard

P assume p is a perfect square!

> the p processes are arranged in a grid of dimension /p X /p
» each process has 4(n/,/p) ghost cells

> total number of ghost cells: 4(np/\/p) = 4n/p

» conclusion: asymptotically

> striped: O(p)
» checkerboard: O(,/p)

S.F. Siegel < CISC 372: Parallel Computing < Distribution 26

