CISC 372: Parallel Computing

Data Distribution and Nearest Neighbor Communication

Stephen F. Siegel
Department of Computer and Information Sciences University of Delaware

Distributing arrays

Distributing arrays

The general problem

Distributing arrays

The general problem

- given
- an array a of length n
- elements of a can be of any type
- the important point is that the elements are ordered
- indices (called global indices) run from 0 to $n-1$

Distributing arrays

The general problem
－given
－an array a of length n
－elements of a can be of any type
－the important point is that the elements are ordered
－indices（called global indices）run from 0 to $n-1$
－the number of processes p
－processes are numbered $0,1, \ldots, p-1$

Distributing arrays

The general problem

- given
- an array a of length n
- elements of a can be of any type
- the important point is that the elements are ordered
- indices (called global indices) run from 0 to $n-1$
- the number of processes p
- processes are numbered $0,1, \ldots, p-1$
- determine a way to distribute the n elements among the p processes

Distributing arrays

The general problem

- given
- an array a of length n
- elements of a can be of any type
- the important point is that the elements are ordered
- indices (called global indices) run from 0 to $n-1$
- the number of processes p
- processes are numbered $0,1, \ldots, p-1$
- determine a way to distribute the n elements among the p processes
- for example, cyclic distribution

Distributing arrays

The general problem

- given
- an array a of length n
- elements of a can be of any type
- the important point is that the elements are ordered
- indices (called global indices) run from 0 to $n-1$
- the number of processes p
- processes are numbered $0,1, \ldots, p-1$
- determine a way to distribute the n elements among the p processes
- for example, cyclic distribution
- each approach has advantages and disadvantages
- e.g., cyclic distribution effective for embarrasingly parallel problems with clusters of longer-running tasks, like SAT

Distributing arrays

The general problem
－given
－an array a of length n
－elements of a can be of any type
－the important point is that the elements are ordered
－indices（called global indices）run from 0 to $n-1$
－the number of processes p
－processes are numbered $0,1, \ldots, p-1$
－determine a way to distribute the n elements among the p processes
－for example，cyclic distribution
－each approach has advantages and disadvantages
－e．g．，cyclic distribution effective for embarrasingly parallel problems with clusters of longer－running tasks，like SAT
－different approaches are appropriate in different contexts

Distributing arrays

The general problem

- given
- an array a of length n
- elements of a can be of any type
- the important point is that the elements are ordered
- indices (called global indices) run from 0 to $n-1$
- the number of processes p
- processes are numbered $0,1, \ldots, p-1$
- determine a way to distribute the n elements among the p processes
- for example, cyclic distribution
- each approach has advantages and disadvantages
- e.g., cyclic distribution effective for embarrasingly parallel problems with clusters of longer-running tasks, like SAT
- different approaches are appropriate in different contexts
- in all cases: need easy way to convert between global and local views

Distribution example with $p=3, n=10$

Distribution example with $p=3, n=10$

global index： $\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

－the sequential program has an array of length 10
－the parallel program has 3 processes
－proc 0 has an array of length 3
－0：0，1：1，2： 2

- proc 1 has an array of length 3
－0：3，1：4，2： 5
－proc 2 has an array of length 4
－0：6，1：7，2：8，3： 9

Block Distribution Solutions

Block Distribution Solutions

- each process owns a contiguous slice of the global array

Block Distribution Solutions

－each process owns a contiguous slice of the global array
－example
－rank 0 owns elements $0,1, \ldots 4$
－rank 1 owns 5， 6
－rank 2 owns nothing
－rank 3 owns $7,8,9$

Block Distribution Solutions

- each process owns a contiguous slice of the global array
- example
- rank 0 owns elements $0,1, \ldots 4$
- rank 1 owns 5, 6
- rank 2 owns nothing
- rank 3 owns $7,8,9$
the set of elements owned by process i can be specified by two numbers:
- the number of elements owned by i
- the first global index owned by i

Block Distribution Solutions

－each process owns a contiguous slice of the global array
－example
－rank 0 owns elements $0,1, \ldots 4$
－rank 1 owns 5， 6
－rank 2 owns nothing
－rank 3 owns $7,8,9$
the set of elements owned by process i can be specified by two numbers：
－the number of elements owned by i
－the first global index owned by i
－main advantage
－many applications require frequent nearest neighbor communication

Block Distribution Solutions

- each process owns a contiguous slice of the global array
- example
- rank 0 owns elements $0,1, \ldots 4$
- rank 1 owns 5, 6
- rank 2 owns nothing
- rank 3 owns $7,8,9$
the set of elements owned by process i can be specified by two numbers:
- the number of elements owned by i
- the first global index owned by i
- main advantage
- many applications require frequent nearest neighbor communication
- e.g.: to update $a[i]$, might need to read $a[i-1]$ and $a[i+1]$

Block Distribution Solutions

- each process owns a contiguous slice of the global array
- example
- rank 0 owns elements $0,1, \ldots 4$
- rank 1 owns 5, 6
- rank 2 owns nothing
- rank 3 owns $7,8,9$
the set of elements owned by process i can be specified by two numbers:
- the number of elements owned by i
- the first global index owned by i
- main advantage
- many applications require frequent nearest neighbor communication
- e.g.: to update $a[i]$, might need to read $a[i-1]$ and $a[i+1]$
- increases probability that $a[i-1]$ and $a[i+1]$ will live on the same process as $a[i]$

Block Distribution Solutions

- each process owns a contiguous slice of the global array
- example
- rank 0 owns elements $0,1, \ldots 4$
- rank 1 owns 5, 6
- rank 2 owns nothing
- rank 3 owns $7,8,9$
the set of elements owned by process i can be specified by two numbers:
- the number of elements owned by i
- the first global index owned by i
- main advantage
- many applications require frequent nearest neighbor communication
- e.g.: to update $a[i]$, might need to read $a[i-1]$ and $a[i+1]$
- increases probability that $a[i-1]$ and $a[i+1]$ will live on the same process as $a[i]$
- communication will be minimized
- cyclic distribution is very ineffective when nearest neighbor communication is required!

Additional Desirable Qualities of Block Distribution Solutions

Additional Desirable Qualities of Block Distribution Solutions

- load balancing

Additional Desirable Qualities of Block Distribution Solutions

- load balancing
- ideally, each process will own the same number of elements

Additional Desirable Qualities of Block Distribution Solutions

- load balancing
- ideally, each process will own the same number of elements
- this is only possible if $p \mid n$
- read " p divides n " (evenly)
- means there exists an integer k such that $n=p k$

Additional Desirable Qualities of Block Distribution Solutions

－load balancing
－ideally，each process will own the same number of elements
－this is only possible if $p \mid n$
－read＂p divides n＂（evenly）
－means there exists an integer k such that $n=p k$
－additional requirement：
－if $p \mid n$ ，all processes own n / p elements

Additional Desirable Qualities of Block Distribution Solutions

－load balancing
－ideally，each process will own the same number of elements
－this is only possible if $p \mid n$
－read＂p divides n＂（evenly）
－means there exists an integer k such that $n=p k$
－additional requirement：
－if $p \mid n$ ，all processes own n / p elements
－otherwise，the number of elements owned by two different processes can differ by at most 1

Additional Desirable Qualities of Block Distribution Solutions

- load balancing
- ideally, each process will own the same number of elements
- this is only possible if $p \mid n$
- read " p divides n " (evenly)
- means there exists an integer k such that $n=p k$
- additional requirement:
- if $p \mid n$, all processes own n / p elements
- otherwise, the number of elements owned by two different processes can differ by at most 1
- some processes have $\lfloor n / p\rfloor$ elements ("small")
- others have $\lceil n / p\rceil=$ elements ("big")

Note:

- $\lfloor x\rfloor=$ the greatest integer less than or equal to x (i.e., round down)
- $\lceil x\rceil=$ the least integer greater than or equal to x (i.e., round up)

Converting between local and global views in a block distribution
A block distribution of n elements over p processes must provide:

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide: 1. FIRST (r)

- given a rank r, returns the first global index owned by proc r

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:

1. FIRST(r)

- given a rank r, returns the first global index owned by proc r

2. NUM_OWNED (r)

- given a rank r, returns the number of elements owned by r

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide：
1．FIRST（ r ）
－given a rank r ，returns the first global index owned by proc r
2．NUM＿OWNED（ r ）
－given a rank r ，returns the number of elements owned by r
3． $\operatorname{OWNER}(j)$
－given a global index j ，returns the rank of the process owning j

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:

1. FIRST(r)

- given a rank r, returns the first global index owned by proc r

2. NUM_OWNED (r)

- given a rank r, returns the number of elements owned by r

3. $\operatorname{OWNER}(j)$

- given a global index j, returns the rank of the process owning j

4. LOCAL_INDEX(j)

- given global index j, returns the local index of element j

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:

1. FIRST(r)

- given a rank r, returns the first global index owned by proc r

2. NUM_OWNED (r)

- given a rank r, returns the number of elements owned by r

3. $\operatorname{OWNER}(j)$

- given a global index j, returns the rank of the process owning j

4. LOCAL_INDEX(j)

- given global index j, returns the local index of element j
- using these, you can easily convert between local and global view

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:

1. $\operatorname{FIRST}(r)$

- given a rank r, returns the first global index owned by proc r

2. NUM_OWNED (r)

- given a rank r, returns the number of elements owned by r

3. $\operatorname{OWNER}(j)$

- given a global index j, returns the rank of the process owning j

4. LOCAL_INDEX(j)

- given global index j, returns the local index of element j
- using these, you can easily convert between local and global view
- example: what is the global index corresponding to local index i on proc r ?

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:

1. $\operatorname{FIRST}(r)$

- given a rank r, returns the first global index owned by proc r

2. NUM_OWNED (r)

- given a rank r, returns the number of elements owned by r

3. $\operatorname{OWNER}(j)$

- given a global index j, returns the rank of the process owning j

4. LOCAL_INDEX(j)

- given global index j, returns the local index of element j
- using these, you can easily convert between local and global view
- example: what is the global index corresponding to local index i on proc r ?
- answer: $i+\operatorname{FIRST}(r)$

The easy case: $p \mid n$

1. $\operatorname{FIRST}(r)=r(n / p)$
2. NUM_OWNED $(r)=n / p$
3. $\operatorname{OWNER}(j)=\lfloor j /(n / p)\rfloor$
4. LOCAL_INDEX $(j)=j \%(n / p)$

Example: $n=12, p=3$: each proc gets $n / p=4$ elements:

global	0	1	2	3	4	5	6	7	8	9	10	11
owner	0	0	0	0	1	1	1	1	2	2	2	2
local	0	1	2	3	0	1	2	3	0	1	2	3

See block1.c, block1_simp_mpi.c.

The general case：the standard block distribution scheme
－ $\operatorname{FIRST}(r)=\lfloor r n / p\rfloor$
－NUM＿OWNED $(r)=\operatorname{FIRST}(r+1)-\operatorname{FIRST}(r)$
－ $\operatorname{OWNER}(j)=\lfloor(p(j+1)-1) / n\rfloor$
－LOCAL＿INDEX $(j)=j-\operatorname{FIRST}(\operatorname{OWNER}(j))$
Intuition：
－If p divides n evenly，each proc gets n / p items．
－The first global index for rank i will be $i(n / p)=i n / p$ ．
－Use same formula for first for the general case，but take floor．

The general case：the standard block distribution scheme
－ $\operatorname{FIRST}(r)=\lfloor r n / p\rfloor$
－NUM＿OWNED $(r)=\operatorname{FIRST}(r+1)-\operatorname{FIRST}(r)$
－ $\operatorname{OWNER}(j)=\lfloor(p(j+1)-1) / n\rfloor$
－LOCAL＿INDEX $(j)=j-\operatorname{FIRST}(\operatorname{OWNER}(j))$
Intuition：
－If p divides n evenly，each proc gets n / p items．
－The first global index for rank i will be $i(n / p)=i n / p$ ．
－Use same formula for first for the general case，but take floor．
Example：$n=10, p=3$ ：

The general case: the standard block distribution scheme

- $\operatorname{FIRST}(r)=\lfloor r n / p\rfloor$
- NUM_OWNED $(r)=\operatorname{FIRST}(r+1)-\operatorname{FIRST}(r)$
- $\operatorname{OWNER}(j)=\lfloor(p(j+1)-1) / n\rfloor$
- LOCAL_INDEX $(j)=j-\operatorname{FIRST}(\operatorname{OWNER}(j))$

Intuition:

- If p divides n evenly, each proc gets n / p items.
- The first global index for rank i will be $i(n / p)=i n / p$.
- Use same formula for first for the general case, but take floor.

Example: $n=10, p=3$:

- $0:$ first $=0$

The general case：the standard block distribution scheme
－ $\operatorname{FIRST}(r)=\lfloor r n / p\rfloor$
－NUM＿OWNED $(r)=\operatorname{FIRST}(r+1)-\operatorname{FIRST}(r)$
－ $\operatorname{OWNER}(j)=\lfloor(p(j+1)-1) / n\rfloor$
－LOCAL＿INDEX $(j)=j-\operatorname{FIRST}(\operatorname{OWNER}(j))$
Intuition：
－If p divides n evenly，each proc gets n / p items．
－The first global index for rank i will be $i(n / p)=i n / p$ ．
－Use same formula for first for the general case，but take floor．
Example：$n=10, p=3$ ：
－ 0 ：first $=0$
－1：first $=\lfloor 10 / 3\rfloor=3$

The general case：the standard block distribution scheme
－ $\operatorname{FIRST}(r)=\lfloor r n / p\rfloor$
－NUM＿OWNED $(r)=\operatorname{FIRST}(r+1)-\operatorname{FIRST}(r)$
－ $\operatorname{OWNER}(j)=\lfloor(p(j+1)-1) / n\rfloor$
－LOCAL＿INDEX $(j)=j-\operatorname{FIRST}(\operatorname{OWNER}(j))$
Intuition：
－If p divides n evenly，each proc gets n / p items．
－The first global index for rank i will be $i(n / p)=i n / p$ ．
－Use same formula for first for the general case，but take floor．
Example：$n=10, p=3$ ：
－ 0 ：first $=0$
－1：first $=\lfloor 10 / 3\rfloor=3$
－2：first $=\lfloor 20 / 3\rfloor=6$

The general case: the standard block distribution scheme

- $\operatorname{FIRST}(r)=\lfloor r n / p\rfloor$
- NUM_OWNED $(r)=\operatorname{FIRST}(r+1)-\operatorname{FIRST}(r)$
- $\operatorname{OWNER}(j)=\lfloor(p(j+1)-1) / n\rfloor$
- LOCAL_INDEX $(j)=j-\operatorname{FIRST}(\operatorname{OWNER}(j))$

Intuition:

- If p divides n evenly, each proc gets n / p items.
- The first global index for rank i will be $i(n / p)=i n / p$.
- Use same formula for first for the general case, but take floor.

Example: $n=10, p=3$:

- 0 : first $=0$
- 1: first $=\lfloor 10 / 3\rfloor=3$
- 2: first $=\lfloor 20 / 3\rfloor=6$
- 3: first $=\lfloor 30 / 3\rfloor=10=n$

The general case: the standard block distribution scheme

- $\operatorname{FIRST}(r)=\lfloor r n / p\rfloor$
- NUM_OWNED $(r)=\operatorname{FIRST}(r+1)-\operatorname{FIRST}(r)$
- $\operatorname{OWNER}(j)=\lfloor(p(j+1)-1) / n\rfloor$
- LOCAL_INDEX $(j)=j-\operatorname{FIRST}(\operatorname{OWNER}(j))$

Intuition:

- If p divides n evenly, each proc gets n / p items.
- The first global index for rank i will be $i(n / p)=i n / p$.
- Use same formula for first for the general case, but take floor.

Example: $n=10, p=3$:

- 0 : first $=0$
- 1: first $=\lfloor 10 / 3\rfloor=3$
- 2: first $=\lfloor 20 / 3\rfloor=6$
- 3: first $=\lfloor 30 / 3\rfloor=10=n$
- in general, $\operatorname{FIRST}(p)=n$; there is no proc p_{8} but this is needed to compute $\operatorname{NUM} \operatorname{OMNNED}(p-1)$

Work out these examples

1. $n=14, p=4$
2. $n=14, p=5$
3. $n=2, p=5$
4. $n=3, p=5$
5. $n=18, p=4$
6. $n=18, p=5$
7. $n=1, p=4$
8. $n=10, p=4$

Codes:

- block1_mpi.c
- glob2loc.c
- loc2glob.c

Example：block1．c

－sums the elements of an array of length N

```
#include <stdio.h>
#ifndef N
#define N 20
#endif
unsigned int a[N];
int main() {
    unsigned long sum = 0;
    for (int i=0; i<N; i++)
        a[i] = i*i;
    for (int i=0; i<N; i++)
        sum += a[i];
    printf("sum = %ld\n", sum);
}
```


Parallel version: block1_mpi.c

```
// Standard block distribution scheme: N items distributed over nprocs procs
#define FIRST(r) ((N)*(r)/nprocs)
#define NUM_OWNED(r) (FIRST((r)+1) - FIRST(r))
#define OWNER(j) ((nprocs*((j)+1)-1)/(N))
#define LOCAL_INDEX(j) ((j)-FIRST(OWNER(j)))
int main() {
    int nprocs, rank; // number of procs, rank of this proc
    int first; // global index of first cell owned by this proc
    int n_local; // number of cells owned by this proc
    MPI_Init(NULL,NULL);
    MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    first = FIRST(rank);
    n_local = NUM_OWNED(rank);
#ifdef DEBUG
    printf("Rank %d: first=%d, n_local=%d\n", rank, first, n_local);
#endif
```


Parallel version: block1_mpi.c, cont.

```
    unsigned int a[n_local]; // local block of global array a
    unsigned long sum = 0, global_sum;
    for (int i=0; i<n_local; i++) {
        const int j = first + i; // convert from local to global index
        a[i] = j * j;
    }
    for (int i=0; i<n_local; i++)
        sum += a[i];
    MPI_Reduce(&sum, &global_sum, 1, MPI_UNSIGNED_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
    MPI_Finalize();
    if (rank == 0) printf("sum = %ld\n", global_sum);
}
```


Nearest neighbor communication and Pascal＇s triangle

Usual representation：

Computer representation：

0	0	0	0	1	0	0	0	0
0	0	0	1	0	1	0	0	0
0	0	1	0	2	0	1	0	0
0	1	0	3	0	3	0	1	0
1	0	4	0	6	0	4	0	1
\vdots								

Pascal: sequential implementation

- see pascal.c
- two arrays are used
- one always holds the current value
- the other holds the previous value
- note use of pointer swapping

Pascal: parallel implementation with MPI

- block distribute arrays
- problem: how to update left and right endpoints of each block?
- these depend on values on neighboring procs
- not embarrassingly parallel - communication is required
- solution: ghost cells
- each proc will have two extra cells
- one on left to mirror value of left neighbor's right endpoint
- one on right to mirror value of right neighbor's left endpoint
- these are not owned by this proc-they duplicate information
- at each iteration:
- print
- exchange ghost cells
- perform the local update

Pascal：ghost cell exchange

－the length of the array on proc r is NUM＿OWNED $(r)+2$
－indexes are shifted up by 1
－see pascal＿mpi．c

Pascal: printing

- all output is funneled through rank 0
- proc 0 is the only proc that prints
- exception: debugging (doesn't have to look perfect)
- this is the only reliable way to get the output right
- with tools currently at your disposable
- MPI's I/O commands are the real "right" way

Pascal: printing

- all output is funneled through rank 0
- proc 0 is the only proc that prints
- exception: debugging (doesn't have to look perfect)
- this is the only reliable way to get the output right
- with tools currently at your disposable
- MPI's I/O commands are the real "right" way
- all procs with positive rank:
- send their (non-ghost) data to rank 0

Pascal: printing

- all output is funneled through rank 0
- proc 0 is the only proc that prints
- exception: debugging (doesn't have to look perfect)
- this is the only reliable way to get the output right
- with tools currently at your disposable
- MPI's I/O commands are the real "right" way
- all procs with positive rank:
- send their (non-ghost) data to rank 0
- proc 0 :
- prints its own block (excluding ghosts)

Pascal: printing

- all output is funneled through rank 0
- proc 0 is the only proc that prints
- exception: debugging (doesn't have to look perfect)
- this is the only reliable way to get the output right
- with tools currently at your disposable
- MPI's I/O commands are the real "right" way
- all procs with positive rank:
- send their (non-ghost) data to rank 0
- proc 0 :
- prints its own block (excluding ghosts)
- loops $i=0 . . n p r o c s-1$
- receives a block from proc i into the "scratch" buffer
- prints that block

Pascal: printing

- all output is funneled through rank 0
- proc 0 is the only proc that prints
- exception: debugging (doesn't have to look perfect)
- this is the only reliable way to get the output right
- with tools currently at your disposable
- MPI's I/O commands are the real "right" way
- all procs with positive rank:
- send their (non-ghost) data to rank 0
- proc 0 :
- prints its own block (excluding ghosts)
- loops $i=0 . . n p r o c s-1$
- receives a block from proc i into the "scratch" buffer
- prints that block
- prints a newline and returns

1-dimensional Diffusion

- Problem
- a metal rod of unit length is initially 100°
- a block of ice is placed at either end to keep ends at 0°
- heat diffuses out of rod
- find the temperature at each point on the rod at each time

1-dimensional Diffusion

- Problem
- a metal rod of unit length is initially 100°
- a block of ice is placed at either end to keep ends at 0°
- heat diffuses out of rod
- find the temperature at each point on the rod at each time
- flow of heat governed by the diffusion equation
- a simple differential equation
- $u=u(t, x)$ temperature function

$$
\frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}}
$$

- α is a constant depending on the material
- thermal diffusivity

Discretization

- divide rod into n discrete pieces of length Δx
- let u[i] be the temperature of the $i^{t h}$ piece
- loop over time
- $\Delta t=$ duration of one discrete time step
- update formula comes from discrete approximations to the first and second derivatives
- continuous

$$
\frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}}
$$

- discrete

$$
\text { u_new[i] }=u[i]+k *(u[i+1]+u[i-1]-2 * u[i])
$$

- $\mathrm{k}=\alpha \Delta t / \Delta x^{2}$
- need $0<k<0.5$ for convergence

Implementations

- diffuse1d.c, diffuse1d_mpi.c
- plain text output
- all output funneled through process 0
- similar to Pascal
- diffusion1d.c, diffusion1d_mpi.c
- uses ANIM and MPIANIM libraries for graphical output

2-d Diffusion

- a metal unit square
- initially 100°
- temperature on perimeter kept at 0°
- $u=u(x, y, t)$ temperature function
- 2d diffusion equation

$$
\frac{\partial u}{\partial t}=\alpha\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

- discretization

$$
\begin{aligned}
& \text { u_new }[i][j]=u[i][j] \\
& \quad+k *(u[i+1][j]+u[i-1][j] \\
& \quad+u[i][j+1]+u[i][j-1]-4 * u[i][j]) ;
\end{aligned}
$$

Parallelization of diffusion2d

- how to distribute the 2d spatial domain?

Parallelization of diffusion2d

- how to distribute the 2d spatial domain?
- "striped" decompositions

Parallelization of diffusion2d

- how to distribute the 2d spatial domain?
- "striped" decompositions
- apply the Standard Block Distribution Scheme to the columns

Parallelization of diffusion2d

- how to distribute the 2d spatial domain?
- "striped" decompositions
- apply the Standard Block Distribution Scheme to the columns
- "column distribution"
- each process gets a certain number of x values
- a ghost cell column on the left and on the right
- exchange ghost columns after each time step

Parallelization of diffusion2d

－how to distribute the 2d spatial domain？
－＂striped＂decompositions
－apply the Standard Block Distribution Scheme to the columns
－＂column distribution＂
－each process gets a certain number of x values
－a ghost cell column on the left and on the right
－exchange ghost columns after each time step
－apply the Standard Block Distribution Scheme to the rows
－＂row distribution＂
－．．．

2d Diffusion: column distribution

2d Diffusion: row distribution

2d Diffusion: checkerboard decomposition

- 4 ghost regions for each process
- 4 exchanges: up, down, left, right

Analysis of Diffusion2d Decomposition

Analysis of Diffusion2d Decomposition

- assume an $n \times n$ grid, p processes

Analysis of Diffusion2d Decomposition

- assume an $n \times n$ grid, p processes
- measure the total "amount" of communication
- roughly, the total number of ghost cells

Analysis of Diffusion2d Decomposition

- assume an $n \times n$ grid, p processes
- measure the total "amount" of communication
- roughly, the total number of ghost cells
- striped
- on each process, there are $2 n$ ghost cells
- total number of ghost cells: $2 n p$

Analysis of Diffusion2d Decomposition

- assume an $n \times n$ grid, p processes
- measure the total "amount" of communication
- roughly, the total number of ghost cells
- striped
- on each process, there are $2 n$ ghost cells
- total number of ghost cells: $2 n p$
- checkerboard
- assume p is a perfect square!
- the p processes are arranged in a grid of dimension $\sqrt{p} \times \sqrt{p}$
- each process has $4(n / \sqrt{p})$ ghost cells
- total number of ghost cells: $4(n p / \sqrt{p})=4 n \sqrt{p}$

Analysis of Diffusion2d Decomposition

- assume an $n \times n$ grid, p processes
- measure the total "amount" of communication
- roughly, the total number of ghost cells
- striped
- on each process, there are $2 n$ ghost cells
- total number of ghost cells: $2 n p$
- checkerboard
- assume p is a perfect square!
- the p processes are arranged in a grid of dimension $\sqrt{p} \times \sqrt{p}$
- each process has $4(n / \sqrt{p})$ ghost cells
- total number of ghost cells: $4(n p / \sqrt{p})=4 n \sqrt{p}$
- conclusion: asymptotically
- striped: $O(p)$
- checkerboard: $O(\sqrt{p})$

