
CISC 372: Parallel Computing

Data Distribution and Nearest Neighbor Communication

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

Distributing arrays

The general problem
I given

I an array a of length n
I elements of a can be of any type
I the important point is that the elements are ordered
I indices (called global indices) run from 0 to n− 1

I the number of processes p
I processes are numbered 0, 1, . . . , p− 1

I determine a way to distribute the n elements among the p processes
I for example, cyclic distribution

I each approach has advantages and disadvantages
I e.g., cyclic distribution effective for embarrasingly parallel problems with clusters of

longer-running tasks, like SAT

I different approaches are appropriate in different contexts

I in all cases: need easy way to convert between global and local views

S.F. Siegel � CISC 372: Parallel Computing � Distribution 2

Distributing arrays

The general problem

I given
I an array a of length n

I elements of a can be of any type
I the important point is that the elements are ordered
I indices (called global indices) run from 0 to n− 1

I the number of processes p
I processes are numbered 0, 1, . . . , p− 1

I determine a way to distribute the n elements among the p processes
I for example, cyclic distribution

I each approach has advantages and disadvantages
I e.g., cyclic distribution effective for embarrasingly parallel problems with clusters of

longer-running tasks, like SAT

I different approaches are appropriate in different contexts

I in all cases: need easy way to convert between global and local views

S.F. Siegel � CISC 372: Parallel Computing � Distribution 2

Distributing arrays

The general problem
I given

I an array a of length n
I elements of a can be of any type
I the important point is that the elements are ordered
I indices (called global indices) run from 0 to n− 1

I the number of processes p
I processes are numbered 0, 1, . . . , p− 1

I determine a way to distribute the n elements among the p processes
I for example, cyclic distribution

I each approach has advantages and disadvantages
I e.g., cyclic distribution effective for embarrasingly parallel problems with clusters of

longer-running tasks, like SAT

I different approaches are appropriate in different contexts

I in all cases: need easy way to convert between global and local views

S.F. Siegel � CISC 372: Parallel Computing � Distribution 2

Distributing arrays

The general problem
I given

I an array a of length n
I elements of a can be of any type
I the important point is that the elements are ordered
I indices (called global indices) run from 0 to n− 1

I the number of processes p
I processes are numbered 0, 1, . . . , p− 1

I determine a way to distribute the n elements among the p processes
I for example, cyclic distribution

I each approach has advantages and disadvantages
I e.g., cyclic distribution effective for embarrasingly parallel problems with clusters of

longer-running tasks, like SAT

I different approaches are appropriate in different contexts

I in all cases: need easy way to convert between global and local views

S.F. Siegel � CISC 372: Parallel Computing � Distribution 2

Distributing arrays

The general problem
I given

I an array a of length n
I elements of a can be of any type
I the important point is that the elements are ordered
I indices (called global indices) run from 0 to n− 1

I the number of processes p
I processes are numbered 0, 1, . . . , p− 1

I determine a way to distribute the n elements among the p processes

I for example, cyclic distribution

I each approach has advantages and disadvantages
I e.g., cyclic distribution effective for embarrasingly parallel problems with clusters of

longer-running tasks, like SAT

I different approaches are appropriate in different contexts

I in all cases: need easy way to convert between global and local views

S.F. Siegel � CISC 372: Parallel Computing � Distribution 2

Distributing arrays

The general problem
I given

I an array a of length n
I elements of a can be of any type
I the important point is that the elements are ordered
I indices (called global indices) run from 0 to n− 1

I the number of processes p
I processes are numbered 0, 1, . . . , p− 1

I determine a way to distribute the n elements among the p processes
I for example, cyclic distribution

I each approach has advantages and disadvantages
I e.g., cyclic distribution effective for embarrasingly parallel problems with clusters of

longer-running tasks, like SAT

I different approaches are appropriate in different contexts

I in all cases: need easy way to convert between global and local views

S.F. Siegel � CISC 372: Parallel Computing � Distribution 2

Distributing arrays

The general problem
I given

I an array a of length n
I elements of a can be of any type
I the important point is that the elements are ordered
I indices (called global indices) run from 0 to n− 1

I the number of processes p
I processes are numbered 0, 1, . . . , p− 1

I determine a way to distribute the n elements among the p processes
I for example, cyclic distribution

I each approach has advantages and disadvantages
I e.g., cyclic distribution effective for embarrasingly parallel problems with clusters of

longer-running tasks, like SAT

I different approaches are appropriate in different contexts

I in all cases: need easy way to convert between global and local views

S.F. Siegel � CISC 372: Parallel Computing � Distribution 2

Distributing arrays

The general problem
I given

I an array a of length n
I elements of a can be of any type
I the important point is that the elements are ordered
I indices (called global indices) run from 0 to n− 1

I the number of processes p
I processes are numbered 0, 1, . . . , p− 1

I determine a way to distribute the n elements among the p processes
I for example, cyclic distribution

I each approach has advantages and disadvantages
I e.g., cyclic distribution effective for embarrasingly parallel problems with clusters of

longer-running tasks, like SAT

I different approaches are appropriate in different contexts

I in all cases: need easy way to convert between global and local views

S.F. Siegel � CISC 372: Parallel Computing � Distribution 2

Distributing arrays

The general problem
I given

I an array a of length n
I elements of a can be of any type
I the important point is that the elements are ordered
I indices (called global indices) run from 0 to n− 1

I the number of processes p
I processes are numbered 0, 1, . . . , p− 1

I determine a way to distribute the n elements among the p processes
I for example, cyclic distribution

I each approach has advantages and disadvantages
I e.g., cyclic distribution effective for embarrasingly parallel problems with clusters of

longer-running tasks, like SAT

I different approaches are appropriate in different contexts

I in all cases: need easy way to convert between global and local views

S.F. Siegel � CISC 372: Parallel Computing � Distribution 2

Distribution example with p = 3, n = 10

0 1 2 3 4 5 6 7 8 9global index:

local index:

owner:

0 1 2 0 1 2 0 1 2 3
0 0 0 1 1 1 2 2 2 2

I the sequential program has an array of length 10
I the parallel program has 3 processes

I proc 0 has an array of length 3
I 0: 0, 1: 1, 2: 2

I proc 1 has an array of length 3
I 0: 3, 1: 4, 2: 5

I proc 2 has an array of length 4
I 0: 6, 1: 7, 2: 8, 3: 9

S.F. Siegel � CISC 372: Parallel Computing � Distribution 3

Distribution example with p = 3, n = 10

0 1 2 3 4 5 6 7 8 9global index:

local index:

owner:

0 1 2 0 1 2 0 1 2 3
0 0 0 1 1 1 2 2 2 2

I the sequential program has an array of length 10
I the parallel program has 3 processes

I proc 0 has an array of length 3
I 0: 0, 1: 1, 2: 2

I proc 1 has an array of length 3
I 0: 3, 1: 4, 2: 5

I proc 2 has an array of length 4
I 0: 6, 1: 7, 2: 8, 3: 9

S.F. Siegel � CISC 372: Parallel Computing � Distribution 3

Block Distribution Solutions

I each process owns a contiguous slice of the global array
I example

I rank 0 owns elements 0, 1, . . . 4
I rank 1 owns 5, 6
I rank 2 owns nothing
I rank 3 owns 7, 8, 9

I the set of elements owned by process i can be specified by two numbers:
I the number of elements owned by i
I the first global index owned by i

I main advantage
I many applications require frequent nearest neighbor communication
I e.g.: to update a[i], might need to read a[i− 1] and a[i+ 1]
I increases probability that a[i− 1] and a[i+ 1] will live on the same process as a[i]
I communication will be minimized
I cyclic distribution is very ineffective when nearest neighbor communication is required!

S.F. Siegel � CISC 372: Parallel Computing � Distribution 4

Block Distribution Solutions

I each process owns a contiguous slice of the global array

I example
I rank 0 owns elements 0, 1, . . . 4
I rank 1 owns 5, 6
I rank 2 owns nothing
I rank 3 owns 7, 8, 9

I the set of elements owned by process i can be specified by two numbers:
I the number of elements owned by i
I the first global index owned by i

I main advantage
I many applications require frequent nearest neighbor communication
I e.g.: to update a[i], might need to read a[i− 1] and a[i+ 1]
I increases probability that a[i− 1] and a[i+ 1] will live on the same process as a[i]
I communication will be minimized
I cyclic distribution is very ineffective when nearest neighbor communication is required!

S.F. Siegel � CISC 372: Parallel Computing � Distribution 4

Block Distribution Solutions

I each process owns a contiguous slice of the global array
I example

I rank 0 owns elements 0, 1, . . . 4
I rank 1 owns 5, 6
I rank 2 owns nothing
I rank 3 owns 7, 8, 9

I the set of elements owned by process i can be specified by two numbers:
I the number of elements owned by i
I the first global index owned by i

I main advantage
I many applications require frequent nearest neighbor communication
I e.g.: to update a[i], might need to read a[i− 1] and a[i+ 1]
I increases probability that a[i− 1] and a[i+ 1] will live on the same process as a[i]
I communication will be minimized
I cyclic distribution is very ineffective when nearest neighbor communication is required!

S.F. Siegel � CISC 372: Parallel Computing � Distribution 4

Block Distribution Solutions

I each process owns a contiguous slice of the global array
I example

I rank 0 owns elements 0, 1, . . . 4
I rank 1 owns 5, 6
I rank 2 owns nothing
I rank 3 owns 7, 8, 9

I the set of elements owned by process i can be specified by two numbers:
I the number of elements owned by i
I the first global index owned by i

I main advantage
I many applications require frequent nearest neighbor communication
I e.g.: to update a[i], might need to read a[i− 1] and a[i+ 1]
I increases probability that a[i− 1] and a[i+ 1] will live on the same process as a[i]
I communication will be minimized
I cyclic distribution is very ineffective when nearest neighbor communication is required!

S.F. Siegel � CISC 372: Parallel Computing � Distribution 4

Block Distribution Solutions

I each process owns a contiguous slice of the global array
I example

I rank 0 owns elements 0, 1, . . . 4
I rank 1 owns 5, 6
I rank 2 owns nothing
I rank 3 owns 7, 8, 9

I the set of elements owned by process i can be specified by two numbers:
I the number of elements owned by i
I the first global index owned by i

I main advantage
I many applications require frequent nearest neighbor communication

I e.g.: to update a[i], might need to read a[i− 1] and a[i+ 1]
I increases probability that a[i− 1] and a[i+ 1] will live on the same process as a[i]
I communication will be minimized
I cyclic distribution is very ineffective when nearest neighbor communication is required!

S.F. Siegel � CISC 372: Parallel Computing � Distribution 4

Block Distribution Solutions

I each process owns a contiguous slice of the global array
I example

I rank 0 owns elements 0, 1, . . . 4
I rank 1 owns 5, 6
I rank 2 owns nothing
I rank 3 owns 7, 8, 9

I the set of elements owned by process i can be specified by two numbers:
I the number of elements owned by i
I the first global index owned by i

I main advantage
I many applications require frequent nearest neighbor communication
I e.g.: to update a[i], might need to read a[i− 1] and a[i+ 1]

I increases probability that a[i− 1] and a[i+ 1] will live on the same process as a[i]
I communication will be minimized
I cyclic distribution is very ineffective when nearest neighbor communication is required!

S.F. Siegel � CISC 372: Parallel Computing � Distribution 4

Block Distribution Solutions

I each process owns a contiguous slice of the global array
I example

I rank 0 owns elements 0, 1, . . . 4
I rank 1 owns 5, 6
I rank 2 owns nothing
I rank 3 owns 7, 8, 9

I the set of elements owned by process i can be specified by two numbers:
I the number of elements owned by i
I the first global index owned by i

I main advantage
I many applications require frequent nearest neighbor communication
I e.g.: to update a[i], might need to read a[i− 1] and a[i+ 1]
I increases probability that a[i− 1] and a[i+ 1] will live on the same process as a[i]

I communication will be minimized
I cyclic distribution is very ineffective when nearest neighbor communication is required!

S.F. Siegel � CISC 372: Parallel Computing � Distribution 4

Block Distribution Solutions

I each process owns a contiguous slice of the global array
I example

I rank 0 owns elements 0, 1, . . . 4
I rank 1 owns 5, 6
I rank 2 owns nothing
I rank 3 owns 7, 8, 9

I the set of elements owned by process i can be specified by two numbers:
I the number of elements owned by i
I the first global index owned by i

I main advantage
I many applications require frequent nearest neighbor communication
I e.g.: to update a[i], might need to read a[i− 1] and a[i+ 1]
I increases probability that a[i− 1] and a[i+ 1] will live on the same process as a[i]
I communication will be minimized
I cyclic distribution is very ineffective when nearest neighbor communication is required!

S.F. Siegel � CISC 372: Parallel Computing � Distribution 4

Additional Desirable Qualities of Block Distribution Solutions

I load balancing

I ideally, each process will own the same number of elements
I this is only possible if p|n

I read “p divides n” (evenly)
I means there exists an integer k such that n = pk

I additional requirement:
I if p|n, all processes own n/p elements
I otherwise, the number of elements owned by two different processes can differ by at most 1

I some processes have bn/pc elements (“small”)
I others have dn/pe = elements (“big”)

Note:

I bxc = the greatest integer less than or equal to x (i.e., round down)

I dxe = the least integer greater than or equal to x (i.e., round up)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 5

Additional Desirable Qualities of Block Distribution Solutions

I load balancing

I ideally, each process will own the same number of elements
I this is only possible if p|n

I read “p divides n” (evenly)
I means there exists an integer k such that n = pk

I additional requirement:
I if p|n, all processes own n/p elements
I otherwise, the number of elements owned by two different processes can differ by at most 1

I some processes have bn/pc elements (“small”)
I others have dn/pe = elements (“big”)

Note:

I bxc = the greatest integer less than or equal to x (i.e., round down)

I dxe = the least integer greater than or equal to x (i.e., round up)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 5

Additional Desirable Qualities of Block Distribution Solutions

I load balancing

I ideally, each process will own the same number of elements

I this is only possible if p|n
I read “p divides n” (evenly)
I means there exists an integer k such that n = pk

I additional requirement:
I if p|n, all processes own n/p elements
I otherwise, the number of elements owned by two different processes can differ by at most 1

I some processes have bn/pc elements (“small”)
I others have dn/pe = elements (“big”)

Note:

I bxc = the greatest integer less than or equal to x (i.e., round down)

I dxe = the least integer greater than or equal to x (i.e., round up)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 5

Additional Desirable Qualities of Block Distribution Solutions

I load balancing

I ideally, each process will own the same number of elements
I this is only possible if p|n

I read “p divides n” (evenly)
I means there exists an integer k such that n = pk

I additional requirement:
I if p|n, all processes own n/p elements
I otherwise, the number of elements owned by two different processes can differ by at most 1

I some processes have bn/pc elements (“small”)
I others have dn/pe = elements (“big”)

Note:

I bxc = the greatest integer less than or equal to x (i.e., round down)

I dxe = the least integer greater than or equal to x (i.e., round up)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 5

Additional Desirable Qualities of Block Distribution Solutions

I load balancing

I ideally, each process will own the same number of elements
I this is only possible if p|n

I read “p divides n” (evenly)
I means there exists an integer k such that n = pk

I additional requirement:
I if p|n, all processes own n/p elements

I otherwise, the number of elements owned by two different processes can differ by at most 1
I some processes have bn/pc elements (“small”)
I others have dn/pe = elements (“big”)

Note:

I bxc = the greatest integer less than or equal to x (i.e., round down)

I dxe = the least integer greater than or equal to x (i.e., round up)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 5

Additional Desirable Qualities of Block Distribution Solutions

I load balancing

I ideally, each process will own the same number of elements
I this is only possible if p|n

I read “p divides n” (evenly)
I means there exists an integer k such that n = pk

I additional requirement:
I if p|n, all processes own n/p elements
I otherwise, the number of elements owned by two different processes can differ by at most 1

I some processes have bn/pc elements (“small”)
I others have dn/pe = elements (“big”)

Note:

I bxc = the greatest integer less than or equal to x (i.e., round down)

I dxe = the least integer greater than or equal to x (i.e., round up)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 5

Additional Desirable Qualities of Block Distribution Solutions

I load balancing

I ideally, each process will own the same number of elements
I this is only possible if p|n

I read “p divides n” (evenly)
I means there exists an integer k such that n = pk

I additional requirement:
I if p|n, all processes own n/p elements
I otherwise, the number of elements owned by two different processes can differ by at most 1

I some processes have bn/pc elements (“small”)
I others have dn/pe = elements (“big”)

Note:

I bxc = the greatest integer less than or equal to x (i.e., round down)

I dxe = the least integer greater than or equal to x (i.e., round up)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 5

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:

1. FIRST(r)
I given a rank r, returns the first global index owned by proc r

2. NUM_OWNED(r)
I given a rank r, returns the number of elements owned by r

3. OWNER(j)
I given a global index j, returns the rank of the process owning j

4. LOCAL_INDEX(j)
I given global index j, returns the local index of element j

I using these, you can easily convert between local and global view
I example: what is the global index corresponding to local index i on proc r?

I answer: i+ FIRST(r)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 6

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:

1. FIRST(r)
I given a rank r, returns the first global index owned by proc r

2. NUM_OWNED(r)
I given a rank r, returns the number of elements owned by r

3. OWNER(j)
I given a global index j, returns the rank of the process owning j

4. LOCAL_INDEX(j)
I given global index j, returns the local index of element j

I using these, you can easily convert between local and global view
I example: what is the global index corresponding to local index i on proc r?

I answer: i+ FIRST(r)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 6

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:

1. FIRST(r)
I given a rank r, returns the first global index owned by proc r

2. NUM_OWNED(r)
I given a rank r, returns the number of elements owned by r

3. OWNER(j)
I given a global index j, returns the rank of the process owning j

4. LOCAL_INDEX(j)
I given global index j, returns the local index of element j

I using these, you can easily convert between local and global view
I example: what is the global index corresponding to local index i on proc r?

I answer: i+ FIRST(r)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 6

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:

1. FIRST(r)
I given a rank r, returns the first global index owned by proc r

2. NUM_OWNED(r)
I given a rank r, returns the number of elements owned by r

3. OWNER(j)
I given a global index j, returns the rank of the process owning j

4. LOCAL_INDEX(j)
I given global index j, returns the local index of element j

I using these, you can easily convert between local and global view
I example: what is the global index corresponding to local index i on proc r?

I answer: i+ FIRST(r)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 6

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:

1. FIRST(r)
I given a rank r, returns the first global index owned by proc r

2. NUM_OWNED(r)
I given a rank r, returns the number of elements owned by r

3. OWNER(j)
I given a global index j, returns the rank of the process owning j

4. LOCAL_INDEX(j)
I given global index j, returns the local index of element j

I using these, you can easily convert between local and global view
I example: what is the global index corresponding to local index i on proc r?

I answer: i+ FIRST(r)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 6

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:

1. FIRST(r)
I given a rank r, returns the first global index owned by proc r

2. NUM_OWNED(r)
I given a rank r, returns the number of elements owned by r

3. OWNER(j)
I given a global index j, returns the rank of the process owning j

4. LOCAL_INDEX(j)
I given global index j, returns the local index of element j

I using these, you can easily convert between local and global view

I example: what is the global index corresponding to local index i on proc r?
I answer: i+ FIRST(r)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 6

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:

1. FIRST(r)
I given a rank r, returns the first global index owned by proc r

2. NUM_OWNED(r)
I given a rank r, returns the number of elements owned by r

3. OWNER(j)
I given a global index j, returns the rank of the process owning j

4. LOCAL_INDEX(j)
I given global index j, returns the local index of element j

I using these, you can easily convert between local and global view
I example: what is the global index corresponding to local index i on proc r?

I answer: i+ FIRST(r)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 6

Converting between local and global views in a block distribution

A block distribution of n elements over p processes must provide:

1. FIRST(r)
I given a rank r, returns the first global index owned by proc r

2. NUM_OWNED(r)
I given a rank r, returns the number of elements owned by r

3. OWNER(j)
I given a global index j, returns the rank of the process owning j

4. LOCAL_INDEX(j)
I given global index j, returns the local index of element j

I using these, you can easily convert between local and global view
I example: what is the global index corresponding to local index i on proc r?

I answer: i+ FIRST(r)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 6

The easy case: p|n
1. FIRST(r) = r(n/p)

2. NUM_OWNED(r) = n/p

3. OWNER(j) = bj/(n/p)c
4. LOCAL_INDEX(j) = j%(n/p)

Example: n = 12, p = 3: each proc gets n/p = 4 elements:

global 0 1 2 3 4 5 6 7 8 9 10 11

owner 0 0 0 0 1 1 1 1 2 2 2 2
local 0 1 2 3 0 1 2 3 0 1 2 3

See block1.c, block1_simp_mpi.c.

S.F. Siegel � CISC 372: Parallel Computing � Distribution 7

The general case: the standard block distribution scheme

I FIRST(r) = brn/pc
I NUM_OWNED(r) = FIRST(r + 1)− FIRST(r)

I OWNER(j) = b(p(j + 1)− 1)/nc
I LOCAL_INDEX(j) = j − FIRST(OWNER(j))

Intuition:

I If p divides n evenly, each proc gets n/p items.

I The first global index for rank i will be i(n/p) = in/p.

I Use same formula for first for the general case, but take floor.

Example: n = 10, p = 3:

I 0: first = 0

I 1: first = b10/3c = 3

I 2: first = b20/3c = 6
I 3: first = b30/3c = 10 = n

I in general, FIRST(p) = n; there is no proc p but this is needed to compute NUM_OWNED(p− 1)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 8

The general case: the standard block distribution scheme

I FIRST(r) = brn/pc
I NUM_OWNED(r) = FIRST(r + 1)− FIRST(r)

I OWNER(j) = b(p(j + 1)− 1)/nc
I LOCAL_INDEX(j) = j − FIRST(OWNER(j))

Intuition:

I If p divides n evenly, each proc gets n/p items.

I The first global index for rank i will be i(n/p) = in/p.

I Use same formula for first for the general case, but take floor.

Example: n = 10, p = 3:

I 0: first = 0

I 1: first = b10/3c = 3

I 2: first = b20/3c = 6
I 3: first = b30/3c = 10 = n

I in general, FIRST(p) = n; there is no proc p but this is needed to compute NUM_OWNED(p− 1)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 8

The general case: the standard block distribution scheme

I FIRST(r) = brn/pc
I NUM_OWNED(r) = FIRST(r + 1)− FIRST(r)

I OWNER(j) = b(p(j + 1)− 1)/nc
I LOCAL_INDEX(j) = j − FIRST(OWNER(j))

Intuition:

I If p divides n evenly, each proc gets n/p items.

I The first global index for rank i will be i(n/p) = in/p.

I Use same formula for first for the general case, but take floor.

Example: n = 10, p = 3:

I 0: first = 0

I 1: first = b10/3c = 3

I 2: first = b20/3c = 6
I 3: first = b30/3c = 10 = n

I in general, FIRST(p) = n; there is no proc p but this is needed to compute NUM_OWNED(p− 1)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 8

The general case: the standard block distribution scheme

I FIRST(r) = brn/pc
I NUM_OWNED(r) = FIRST(r + 1)− FIRST(r)

I OWNER(j) = b(p(j + 1)− 1)/nc
I LOCAL_INDEX(j) = j − FIRST(OWNER(j))

Intuition:

I If p divides n evenly, each proc gets n/p items.

I The first global index for rank i will be i(n/p) = in/p.

I Use same formula for first for the general case, but take floor.

Example: n = 10, p = 3:

I 0: first = 0

I 1: first = b10/3c = 3

I 2: first = b20/3c = 6
I 3: first = b30/3c = 10 = n

I in general, FIRST(p) = n; there is no proc p but this is needed to compute NUM_OWNED(p− 1)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 8

The general case: the standard block distribution scheme

I FIRST(r) = brn/pc
I NUM_OWNED(r) = FIRST(r + 1)− FIRST(r)

I OWNER(j) = b(p(j + 1)− 1)/nc
I LOCAL_INDEX(j) = j − FIRST(OWNER(j))

Intuition:

I If p divides n evenly, each proc gets n/p items.

I The first global index for rank i will be i(n/p) = in/p.

I Use same formula for first for the general case, but take floor.

Example: n = 10, p = 3:

I 0: first = 0

I 1: first = b10/3c = 3

I 2: first = b20/3c = 6

I 3: first = b30/3c = 10 = n
I in general, FIRST(p) = n; there is no proc p but this is needed to compute NUM_OWNED(p− 1)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 8

The general case: the standard block distribution scheme

I FIRST(r) = brn/pc
I NUM_OWNED(r) = FIRST(r + 1)− FIRST(r)

I OWNER(j) = b(p(j + 1)− 1)/nc
I LOCAL_INDEX(j) = j − FIRST(OWNER(j))

Intuition:

I If p divides n evenly, each proc gets n/p items.

I The first global index for rank i will be i(n/p) = in/p.

I Use same formula for first for the general case, but take floor.

Example: n = 10, p = 3:

I 0: first = 0

I 1: first = b10/3c = 3

I 2: first = b20/3c = 6
I 3: first = b30/3c = 10 = n

I in general, FIRST(p) = n; there is no proc p but this is needed to compute NUM_OWNED(p− 1)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 8

The general case: the standard block distribution scheme

I FIRST(r) = brn/pc
I NUM_OWNED(r) = FIRST(r + 1)− FIRST(r)

I OWNER(j) = b(p(j + 1)− 1)/nc
I LOCAL_INDEX(j) = j − FIRST(OWNER(j))

Intuition:

I If p divides n evenly, each proc gets n/p items.

I The first global index for rank i will be i(n/p) = in/p.

I Use same formula for first for the general case, but take floor.

Example: n = 10, p = 3:

I 0: first = 0

I 1: first = b10/3c = 3

I 2: first = b20/3c = 6
I 3: first = b30/3c = 10 = n

I in general, FIRST(p) = n; there is no proc p but this is needed to compute NUM_OWNED(p− 1)
S.F. Siegel � CISC 372: Parallel Computing � Distribution 8

Work out these examples

1. n = 14, p = 4

2. n = 14, p = 5

3. n = 2, p = 5

4. n = 3, p = 5

5. n = 18, p = 4

6. n = 18, p = 5

7. n = 1, p = 4

8. n = 10, p = 4

FIRST(r) = brn/pc
NUM_OWNED(r) = FIRST(r + 1)− FIRST(r)

OWNER(j) = b(p(j + 1)− 1)/nc
LOCAL_INDEX(j) = j − FIRST(OWNER(j))

Codes:

I block1_mpi.c

I glob2loc.c

I loc2glob.c

S.F. Siegel � CISC 372: Parallel Computing � Distribution 9

Example: block1.c

I sums the elements of an array of length N

#include <stdio.h>

#ifndef N

#define N 20

#endif

unsigned int a[N];

int main() {

unsigned long sum = 0;

for (int i=0; i<N; i++)

a[i] = i*i;

for (int i=0; i<N; i++)

sum += a[i];

printf("sum = %ld\n", sum);

}

S.F. Siegel � CISC 372: Parallel Computing � Distribution 10

Parallel version: block1_mpi.c

// Standard block distribution scheme: N items distributed over nprocs procs

#define FIRST(r) ((N)*(r)/nprocs)

#define NUM_OWNED(r) (FIRST((r)+1) - FIRST(r))

#define OWNER(j) ((nprocs*((j)+1)-1)/(N))

#define LOCAL_INDEX(j) ((j)-FIRST(OWNER(j)))

int main() {

int nprocs, rank; // number of procs, rank of this proc

int first; // global index of first cell owned by this proc

int n_local; // number of cells owned by this proc

MPI_Init(NULL,NULL);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

first = FIRST(rank);

n_local = NUM_OWNED(rank);

#ifdef DEBUG

printf("Rank %d: first=%d, n_local=%d\n", rank, first, n_local);

#endif
S.F. Siegel � CISC 372: Parallel Computing � Distribution 11

Parallel version: block1_mpi.c, cont.

unsigned int a[n_local]; // local block of global array a

unsigned long sum = 0, global_sum;

for (int i=0; i<n_local; i++) {

const int j = first + i; // convert from local to global index

a[i] = j * j;

}

for (int i=0; i<n_local; i++)

sum += a[i];

MPI_Reduce(&sum, &global_sum, 1, MPI_UNSIGNED_LONG, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Finalize();

if (rank == 0) printf("sum = %ld\n", global_sum);

}

S.F. Siegel � CISC 372: Parallel Computing � Distribution 12

Nearest neighbor communication and Pascal’s triangle

Usual representation:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
...

...
...

...
...

...
...

...
...

Computer representation:

0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 1 0 2 0 1 0 0
0 1 0 3 0 3 0 1 0
1 0 4 0 6 0 4 0 1
...

...
...

...
...

...
...

...
...

S.F. Siegel � CISC 372: Parallel Computing � Distribution 13

Pascal: sequential implementation

I see pascal.c

I two arrays are used
I one always holds the current value
I the other holds the previous value

I note use of pointer swapping

S.F. Siegel � CISC 372: Parallel Computing � Distribution 14

Pascal: parallel implementation with MPI

I block distribute arrays
I problem: how to update left and right endpoints of each block?

I these depend on values on neighboring procs
I not embarrassingly parallel — communication is required

I solution: ghost cells
I each proc will have two extra cells

I one on left to mirror value of left neighbor’s right endpoint
I one on right to mirror value of right neighbor’s left endpoint
I these are not owned by this proc—they duplicate information

I at each iteration:
I print
I exchange ghost cells
I perform the local update

S.F. Siegel � CISC 372: Parallel Computing � Distribution 15

Pascal: ghost cell exchange

0 1 0 3 0 3 0 1 0

0 0 1 0 3 0 3 0 3 0 3 0 1 0 0

1 0 4 0 6 0 4 0 1

0 1 0 4 0 4 0 6 0 4 0 4 0 1 0

0 5 0 0 0 5 0

exchange…

update…

exchange…

update…

…

…

…

…

…

…

…

…

…

…10 10

I the length of the array on proc r is NUM_OWNED(r) + 2

I indexes are shifted up by 1

I see pascal_mpi.c
S.F. Siegel � CISC 372: Parallel Computing � Distribution 16

Pascal: printing

I all output is funneled through rank 0
I proc 0 is the only proc that prints
I exception: debugging (doesn’t have to look perfect)
I this is the only reliable way to get the output right

I with tools currently at your disposable
I MPI’s I/O commands are the real “right” way

I all procs with positive rank:
I send their (non-ghost) data to rank 0

I proc 0:
I prints its own block (excluding ghosts)
I loops i = 0..nprocs− 1

I receives a block from proc i into the “scratch” buffer
I prints that block

I prints a newline and returns

S.F. Siegel � CISC 372: Parallel Computing � Distribution 17

Pascal: printing

I all output is funneled through rank 0
I proc 0 is the only proc that prints
I exception: debugging (doesn’t have to look perfect)
I this is the only reliable way to get the output right

I with tools currently at your disposable
I MPI’s I/O commands are the real “right” way

I all procs with positive rank:
I send their (non-ghost) data to rank 0

I proc 0:
I prints its own block (excluding ghosts)
I loops i = 0..nprocs− 1

I receives a block from proc i into the “scratch” buffer
I prints that block

I prints a newline and returns

S.F. Siegel � CISC 372: Parallel Computing � Distribution 17

Pascal: printing

I all output is funneled through rank 0
I proc 0 is the only proc that prints
I exception: debugging (doesn’t have to look perfect)
I this is the only reliable way to get the output right

I with tools currently at your disposable
I MPI’s I/O commands are the real “right” way

I all procs with positive rank:
I send their (non-ghost) data to rank 0

I proc 0:
I prints its own block (excluding ghosts)

I loops i = 0..nprocs− 1
I receives a block from proc i into the “scratch” buffer
I prints that block

I prints a newline and returns

S.F. Siegel � CISC 372: Parallel Computing � Distribution 17

Pascal: printing

I all output is funneled through rank 0
I proc 0 is the only proc that prints
I exception: debugging (doesn’t have to look perfect)
I this is the only reliable way to get the output right

I with tools currently at your disposable
I MPI’s I/O commands are the real “right” way

I all procs with positive rank:
I send their (non-ghost) data to rank 0

I proc 0:
I prints its own block (excluding ghosts)
I loops i = 0..nprocs− 1

I receives a block from proc i into the “scratch” buffer
I prints that block

I prints a newline and returns

S.F. Siegel � CISC 372: Parallel Computing � Distribution 17

Pascal: printing

I all output is funneled through rank 0
I proc 0 is the only proc that prints
I exception: debugging (doesn’t have to look perfect)
I this is the only reliable way to get the output right

I with tools currently at your disposable
I MPI’s I/O commands are the real “right” way

I all procs with positive rank:
I send their (non-ghost) data to rank 0

I proc 0:
I prints its own block (excluding ghosts)
I loops i = 0..nprocs− 1

I receives a block from proc i into the “scratch” buffer
I prints that block

I prints a newline and returns

S.F. Siegel � CISC 372: Parallel Computing � Distribution 17

1-dimensional Diffusion

I Problem
I a metal rod of unit length is initially 100◦

I a block of ice is placed at either end to keep ends at 0◦

I heat diffuses out of rod
I find the temperature at each point on the rod at each time

I flow of heat governed by the diffusion equation
I a simple differential equation
I u = u(t, x) temperature function

∂u

∂t
= α

∂2u

∂x2

I α is a constant depending on the material
I thermal diffusivity

S.F. Siegel � CISC 372: Parallel Computing � Distribution 18

1-dimensional Diffusion

I Problem
I a metal rod of unit length is initially 100◦

I a block of ice is placed at either end to keep ends at 0◦

I heat diffuses out of rod
I find the temperature at each point on the rod at each time

I flow of heat governed by the diffusion equation
I a simple differential equation
I u = u(t, x) temperature function

∂u

∂t
= α

∂2u

∂x2

I α is a constant depending on the material
I thermal diffusivity

S.F. Siegel � CISC 372: Parallel Computing � Distribution 18

Discretization

I divide rod into n discrete pieces of length ∆x

I let u[i] be the temperature of the ith piece
I loop over time

I ∆t = duration of one discrete time step

I update formula comes from discrete approximations to the first and second derivatives
I continuous

∂u

∂t
= α

∂2u

∂x2

I discrete

u_new[i] = u[i] + k*(u[i+1] + u[i-1] - 2*u[i])

I k = α∆t/∆x2

I need 0 < k < 0.5 for convergence

S.F. Siegel � CISC 372: Parallel Computing � Distribution 19

Implementations

I diffuse1d.c, diffuse1d_mpi.c
I plain text output
I all output funneled through process 0
I similar to Pascal

I diffusion1d.c, diffusion1d_mpi.c
I uses ANIM and MPIANIM libraries for graphical output

S.F. Siegel � CISC 372: Parallel Computing � Distribution 20

2-d Diffusion

I a metal unit square
I initially 100◦

I temperature on perimeter kept at 0◦

I u = u(x, y, t) temperature function

I 2d diffusion equation
∂u

∂t
= α

(
∂2u

∂x2
+
∂2u

∂y2

)
I discretization

u_new[i][j] = u[i][j]

+ k*(u[i+1][j] + u[i-1][j]

+ u[i][j+1] + u[i][j-1] - 4*u[i][j]);

S.F. Siegel � CISC 372: Parallel Computing � Distribution 21

Parallelization of diffusion2d

I how to distribute the 2d spatial domain?

I “striped” decompositions
I apply the Standard Block Distribution Scheme to the columns

I “column distribution”
I each process gets a certain number of x values
I a ghost cell column on the left and on the right
I exchange ghost columns after each time step

I apply the Standard Block Distribution Scheme to the rows
I “row distribution”
I . . .

S.F. Siegel � CISC 372: Parallel Computing � Distribution 22

Parallelization of diffusion2d

I how to distribute the 2d spatial domain?
I “striped” decompositions

I apply the Standard Block Distribution Scheme to the columns
I “column distribution”
I each process gets a certain number of x values
I a ghost cell column on the left and on the right
I exchange ghost columns after each time step

I apply the Standard Block Distribution Scheme to the rows
I “row distribution”
I . . .

S.F. Siegel � CISC 372: Parallel Computing � Distribution 22

Parallelization of diffusion2d

I how to distribute the 2d spatial domain?
I “striped” decompositions

I apply the Standard Block Distribution Scheme to the columns

I “column distribution”
I each process gets a certain number of x values
I a ghost cell column on the left and on the right
I exchange ghost columns after each time step

I apply the Standard Block Distribution Scheme to the rows
I “row distribution”
I . . .

S.F. Siegel � CISC 372: Parallel Computing � Distribution 22

Parallelization of diffusion2d

I how to distribute the 2d spatial domain?
I “striped” decompositions

I apply the Standard Block Distribution Scheme to the columns
I “column distribution”
I each process gets a certain number of x values
I a ghost cell column on the left and on the right
I exchange ghost columns after each time step

I apply the Standard Block Distribution Scheme to the rows
I “row distribution”
I . . .

S.F. Siegel � CISC 372: Parallel Computing � Distribution 22

Parallelization of diffusion2d

I how to distribute the 2d spatial domain?
I “striped” decompositions

I apply the Standard Block Distribution Scheme to the columns
I “column distribution”
I each process gets a certain number of x values
I a ghost cell column on the left and on the right
I exchange ghost columns after each time step

I apply the Standard Block Distribution Scheme to the rows
I “row distribution”
I . . .

S.F. Siegel � CISC 372: Parallel Computing � Distribution 22

2d Diffusion: column distribution

S.F. Siegel � CISC 372: Parallel Computing � Distribution 23

2d Diffusion: row distribution

S.F. Siegel � CISC 372: Parallel Computing � Distribution 24

2d Diffusion: checkerboard decomposition

I 4 ghost regions for each process

I 4 exchanges: up, down, left, right

S.F. Siegel � CISC 372: Parallel Computing � Distribution 25

Analysis of Diffusion2d Decomposition

I assume an n× n grid, p processes
I measure the total “amount” of communication

I roughly, the total number of ghost cells

I striped
I on each process, there are 2n ghost cells
I total number of ghost cells: 2np

I checkerboard
I assume p is a perfect square!
I the p processes are arranged in a grid of dimension

√
p×√p

I each process has 4(n/
√
p) ghost cells

I total number of ghost cells: 4(np/
√
p) = 4n

√
p

I conclusion: asymptotically
I striped: O(p)
I checkerboard: O(

√
p)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 26

Analysis of Diffusion2d Decomposition

I assume an n× n grid, p processes

I measure the total “amount” of communication
I roughly, the total number of ghost cells

I striped
I on each process, there are 2n ghost cells
I total number of ghost cells: 2np

I checkerboard
I assume p is a perfect square!
I the p processes are arranged in a grid of dimension

√
p×√p

I each process has 4(n/
√
p) ghost cells

I total number of ghost cells: 4(np/
√
p) = 4n

√
p

I conclusion: asymptotically
I striped: O(p)
I checkerboard: O(

√
p)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 26

Analysis of Diffusion2d Decomposition

I assume an n× n grid, p processes
I measure the total “amount” of communication

I roughly, the total number of ghost cells

I striped
I on each process, there are 2n ghost cells
I total number of ghost cells: 2np

I checkerboard
I assume p is a perfect square!
I the p processes are arranged in a grid of dimension

√
p×√p

I each process has 4(n/
√
p) ghost cells

I total number of ghost cells: 4(np/
√
p) = 4n

√
p

I conclusion: asymptotically
I striped: O(p)
I checkerboard: O(

√
p)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 26

Analysis of Diffusion2d Decomposition

I assume an n× n grid, p processes
I measure the total “amount” of communication

I roughly, the total number of ghost cells

I striped
I on each process, there are 2n ghost cells
I total number of ghost cells: 2np

I checkerboard
I assume p is a perfect square!
I the p processes are arranged in a grid of dimension

√
p×√p

I each process has 4(n/
√
p) ghost cells

I total number of ghost cells: 4(np/
√
p) = 4n

√
p

I conclusion: asymptotically
I striped: O(p)
I checkerboard: O(

√
p)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 26

Analysis of Diffusion2d Decomposition

I assume an n× n grid, p processes
I measure the total “amount” of communication

I roughly, the total number of ghost cells

I striped
I on each process, there are 2n ghost cells
I total number of ghost cells: 2np

I checkerboard
I assume p is a perfect square!
I the p processes are arranged in a grid of dimension

√
p×√p

I each process has 4(n/
√
p) ghost cells

I total number of ghost cells: 4(np/
√
p) = 4n

√
p

I conclusion: asymptotically
I striped: O(p)
I checkerboard: O(

√
p)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 26

Analysis of Diffusion2d Decomposition

I assume an n× n grid, p processes
I measure the total “amount” of communication

I roughly, the total number of ghost cells

I striped
I on each process, there are 2n ghost cells
I total number of ghost cells: 2np

I checkerboard
I assume p is a perfect square!
I the p processes are arranged in a grid of dimension

√
p×√p

I each process has 4(n/
√
p) ghost cells

I total number of ghost cells: 4(np/
√
p) = 4n

√
p

I conclusion: asymptotically
I striped: O(p)
I checkerboard: O(

√
p)

S.F. Siegel � CISC 372: Parallel Computing � Distribution 26

