
CISC 372: Parallel Computing

MPI Collectives

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware



The collective model of computation

I a collective operation is invoked by all processes in a communicator

I some processes contribute data, some receive data, some operations may be performed
I collective operations capture many commonly used parallel patterns

I one process broadcasts data to all
I add up values across processes and return the result to one process
I gather data from all processes into one big array on one process

I many parallel algorithms can be expressed most easily using collectives
I collective programs are easier to understand than point-to-point

I a higher-level, abstract, “big step” view of an algorithm
I all procs do this, then all procs do that, then all procs do, . . .
I you can reason about them much like a sequential program

I MPI implementations have very optimized implementations of collectives
I these can be quite complicated, but the implementation details are hidden from the user

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 2



The collective model of computation

I a collective operation is invoked by all processes in a communicator

I some processes contribute data, some receive data, some operations may be performed

I collective operations capture many commonly used parallel patterns
I one process broadcasts data to all
I add up values across processes and return the result to one process
I gather data from all processes into one big array on one process

I many parallel algorithms can be expressed most easily using collectives
I collective programs are easier to understand than point-to-point

I a higher-level, abstract, “big step” view of an algorithm
I all procs do this, then all procs do that, then all procs do, . . .
I you can reason about them much like a sequential program

I MPI implementations have very optimized implementations of collectives
I these can be quite complicated, but the implementation details are hidden from the user

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 2



The collective model of computation

I a collective operation is invoked by all processes in a communicator

I some processes contribute data, some receive data, some operations may be performed
I collective operations capture many commonly used parallel patterns

I one process broadcasts data to all
I add up values across processes and return the result to one process
I gather data from all processes into one big array on one process

I many parallel algorithms can be expressed most easily using collectives
I collective programs are easier to understand than point-to-point

I a higher-level, abstract, “big step” view of an algorithm
I all procs do this, then all procs do that, then all procs do, . . .
I you can reason about them much like a sequential program

I MPI implementations have very optimized implementations of collectives
I these can be quite complicated, but the implementation details are hidden from the user

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 2



The collective model of computation

I a collective operation is invoked by all processes in a communicator

I some processes contribute data, some receive data, some operations may be performed
I collective operations capture many commonly used parallel patterns

I one process broadcasts data to all
I add up values across processes and return the result to one process
I gather data from all processes into one big array on one process

I many parallel algorithms can be expressed most easily using collectives

I collective programs are easier to understand than point-to-point
I a higher-level, abstract, “big step” view of an algorithm
I all procs do this, then all procs do that, then all procs do, . . .
I you can reason about them much like a sequential program

I MPI implementations have very optimized implementations of collectives
I these can be quite complicated, but the implementation details are hidden from the user

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 2



The collective model of computation

I a collective operation is invoked by all processes in a communicator

I some processes contribute data, some receive data, some operations may be performed
I collective operations capture many commonly used parallel patterns

I one process broadcasts data to all
I add up values across processes and return the result to one process
I gather data from all processes into one big array on one process

I many parallel algorithms can be expressed most easily using collectives
I collective programs are easier to understand than point-to-point

I a higher-level, abstract, “big step” view of an algorithm
I all procs do this, then all procs do that, then all procs do, . . .
I you can reason about them much like a sequential program

I MPI implementations have very optimized implementations of collectives
I these can be quite complicated, but the implementation details are hidden from the user

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 2



The collective model of computation

I a collective operation is invoked by all processes in a communicator

I some processes contribute data, some receive data, some operations may be performed
I collective operations capture many commonly used parallel patterns

I one process broadcasts data to all
I add up values across processes and return the result to one process
I gather data from all processes into one big array on one process

I many parallel algorithms can be expressed most easily using collectives
I collective programs are easier to understand than point-to-point

I a higher-level, abstract, “big step” view of an algorithm
I all procs do this, then all procs do that, then all procs do, . . .
I you can reason about them much like a sequential program

I MPI implementations have very optimized implementations of collectives
I these can be quite complicated, but the implementation details are hidden from the user

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 2



MPI_Reduce

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm)

sendbuf address of send buffer (void*)
recvbuf address of recv buffer (root only, void*)
count number of elements in send buffer (int)

datatype data type of elements in send buffer (MPI_Datatype)
op reduce operation (MPI_Op)

root rank of root process (int)
comm communicator (MPI_Comm)

Rank 0 sendbuf x00 x01 x02
Rank 1 sendbuf x10 x11 x12
Rank 2 sendbuf x20 x21 x22

Root recvbuf x00 + x10 + x20 x01 + x11 + x21 x02 + x12 + x22

I see reduce.c
S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 3



Creating global synchronization points: MPI_Barrier

MPI_Barrier(comm)

comm communicator (MPI_Comm)

I blocks calling process until all processes in comm call MPI_Barrier
I if one process in comm calls MPI_Barrier(comm), all should

I else deadlock ensues

I explicit barriers are rarely needed; some exceptions. . .
I good practice: use barriers before calling MPI_Wtime

I ensures all processes have reached that point

I programs that use MPI_ANY_SOURCE (coming soon)
I barriers may be necessary to control how sends are matched with received

I using barriers to control order of printing from different procs is not reliable
I sometimes it works, sometimes it doesn’t

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 4



Creating global synchronization points: MPI_Barrier

MPI_Barrier(comm)

comm communicator (MPI_Comm)

I blocks calling process until all processes in comm call MPI_Barrier

I if one process in comm calls MPI_Barrier(comm), all should
I else deadlock ensues

I explicit barriers are rarely needed; some exceptions. . .
I good practice: use barriers before calling MPI_Wtime

I ensures all processes have reached that point

I programs that use MPI_ANY_SOURCE (coming soon)
I barriers may be necessary to control how sends are matched with received

I using barriers to control order of printing from different procs is not reliable
I sometimes it works, sometimes it doesn’t

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 4



Creating global synchronization points: MPI_Barrier

MPI_Barrier(comm)

comm communicator (MPI_Comm)

I blocks calling process until all processes in comm call MPI_Barrier
I if one process in comm calls MPI_Barrier(comm), all should

I else deadlock ensues

I explicit barriers are rarely needed; some exceptions. . .
I good practice: use barriers before calling MPI_Wtime

I ensures all processes have reached that point

I programs that use MPI_ANY_SOURCE (coming soon)
I barriers may be necessary to control how sends are matched with received

I using barriers to control order of printing from different procs is not reliable
I sometimes it works, sometimes it doesn’t

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 4



Creating global synchronization points: MPI_Barrier

MPI_Barrier(comm)

comm communicator (MPI_Comm)

I blocks calling process until all processes in comm call MPI_Barrier
I if one process in comm calls MPI_Barrier(comm), all should

I else deadlock ensues

I explicit barriers are rarely needed; some exceptions. . .
I good practice: use barriers before calling MPI_Wtime

I ensures all processes have reached that point

I programs that use MPI_ANY_SOURCE (coming soon)
I barriers may be necessary to control how sends are matched with received

I using barriers to control order of printing from different procs is not reliable
I sometimes it works, sometimes it doesn’t

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 4



Creating global synchronization points: MPI_Barrier

MPI_Barrier(comm)

comm communicator (MPI_Comm)

I blocks calling process until all processes in comm call MPI_Barrier
I if one process in comm calls MPI_Barrier(comm), all should

I else deadlock ensues

I explicit barriers are rarely needed; some exceptions. . .
I good practice: use barriers before calling MPI_Wtime

I ensures all processes have reached that point

I programs that use MPI_ANY_SOURCE (coming soon)
I barriers may be necessary to control how sends are matched with received

I using barriers to control order of printing from different procs is not reliable
I sometimes it works, sometimes it doesn’t

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 4



Broadcast: MPI_Bcast

MPI_Bcast(buffer, count, datatype, root, comm)

buffer address of buffer (void*)
count number of elements in buffer (int)

datatype data type of elements in buffer (MPI_Datatype)
root rank of root process (int)
comm communicator (MPI_Comm)

I broadcasts a message from a single process (root) to all other processes in comm

I on root, buffer acts as a send buffer; on non-root procs, buffer acts as a receive buffer

I after return, buffer will contain the same data as that on root
I is a barrier (global synchronization point) induced?

I all procs must enter before any proc can exit ?

No

I see bcast.c

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 5



Broadcast: MPI_Bcast

MPI_Bcast(buffer, count, datatype, root, comm)

buffer address of buffer (void*)
count number of elements in buffer (int)

datatype data type of elements in buffer (MPI_Datatype)
root rank of root process (int)
comm communicator (MPI_Comm)

I broadcasts a message from a single process (root) to all other processes in comm

I on root, buffer acts as a send buffer; on non-root procs, buffer acts as a receive buffer

I after return, buffer will contain the same data as that on root
I is a barrier (global synchronization point) induced?

I all procs must enter before any proc can exit ? No

I see bcast.c

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 5



MPI_Allreduce

MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)

sendbuf address of send buffer (void*)
recvbuf address of recv buffer (void*)
count number of elements in send buffer (int)

datatype data type of elements in send buffer (MPI_Datatype)
op reduce operation (MPI_Op)

comm communicator (MPI_Comm)

I just like MPI_Reduce, but no root

I instead, result is returned to all processes in comm

I equivalent to MPI_Reduce followed by MPI_Bcast

I barrier?

yes

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 6



MPI_Allreduce

MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)

sendbuf address of send buffer (void*)
recvbuf address of recv buffer (void*)
count number of elements in send buffer (int)

datatype data type of elements in send buffer (MPI_Datatype)
op reduce operation (MPI_Op)

comm communicator (MPI_Comm)

I just like MPI_Reduce, but no root

I instead, result is returned to all processes in comm

I equivalent to MPI_Reduce followed by MPI_Bcast

I barrier? yes

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 6



MPI_Scatter

MPI_Scatter(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype, root, comm)

sendbuf address of send buffer (root only, void*)
sendcount num. elements sent to each proc (root, int)
sendtype data type of send buf. elements (root, MPI_Datatype)
recvbuf address of receive buffer (void*)

recvcount number of elements in recv buffer (int)
recvtype type of data to receive (MPI_Datatype)

root rank of sending process (int)
comm communicator (MPI_Comm)

I similar to broadcast: the root sends, everyone else receives
I but: root sends a different block of sendbuf to each proc

I rank 0 gets the first sendcount elements, rank 1 gets the next sendcount elements . . .

I number of elements in sendbuf is nprocs*sendcount; see scatter.c

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 7



MPI_Scatterv

MPI_Scatterv(sendbuf, sendcounts, displs, sendtype,

recvbuf, recvcount, recvtype, root, comm)

sendbuf address of send buffer (root only, void*)
sendcounts num. elements sent to each proc (root only, int[nprocs])

displs displacements for each proc (root only, int[nprocs])
sendtype data type of send buf. elements (root only, MPI_Datatype)
recvbuf address of receive buffer (void*)

recvcount number of elements in recv buffer (int)
recvtype type of data to receive (MPI_Datatype)

root rank of sending process (int)
comm communicator (MPI_Comm)

I generalizes MPI_Scatter: the amount of data sent to each process can vary

I sendcounts[i] = number of elements to send to proc i

I displs[i] = offset of send buffer for proc i relative to sendbuf

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 8



MPI_Gather

MPI_Gather(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype, root, comm)

sendbuf address of send buffer (void*)
sendcount num. elements to send (int)
sendtype data type of send buf. elements (MPI_Datatype)
recvbuf address of receive buffer (root only, void*)

recvcount number of elements to recv from each proc (root, int)
recvtype type of data to receive (root, MPI_Datatype)

root rank of receiving process (int)
comm communicator (MPI_Comm)

I inverse of MPI_Scatter: everyone sends to root, root receives from everyone
I root receives into a different block of recvbuf for each proc

I rank 0’s message goes into first recvcount elements
I rank 1’s message goes into next recvcount elements . . .

I number of elements in recvbuf is nprocs*recvcount
S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 9



MPI_Allgather

MPI_Allgather(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype, comm)

sendbuf address of send buffer (void*)
sendcount num. elements to send (int)
sendtype data type of send buf. elements (MPI_Datatype)
recvbuf address of receive buffer (void*)

recvcount number of elements to recv from each proc (int)
recvtype type of data to receive (MPI_Datatype)

comm communicator (MPI_Comm)

I like MPI_Gather done once for each proc

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 10



MPI_Gatherv

MPI_Gatherv(sendbuf, sendcount, sendtype,

recvbuf, recvcounts, displs, recvtype, root, comm)

sendbuf address of send buffer (void*)
sendcount num. elements to send (int)
sendtype data type of send buf. elements (MPI_Datatype)
recvbuf address of receive buffer (root, void*)

recvcounts number of elements to recv from each proc (root, int[nprocs])
displs displacements of receive buffers (root, int[nprocs])

recvtype type of data to receive (root, MPI_Datatype)
root rank of receiving process (int)
comm communicator (MPI_Comm)

I generalizes MPI_Gather

I the amount sent by each process can vary

I see gatherv.c

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 11



MPI_Alltoall

MPI_Alltoall(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype, comm)

sendbuf address of send buffer (void*)
sendcount num. elements to send (int)
sendtype data type of send buf. elements (MPI_Datatype)
recvbuf address of receive buffer (void*)

recvcount number of elements to receive on each proc (int)
recvtype type of element to receive (MPI_Datatype)

comm communicator (MPI_Comm)

I every process sends distinct buffers to all others

I amount of data sent to each process is the same

I symmetric (no root)

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 12



MPI_Alltoallv

MPI_Alltoallv(sendbuf, sendcounts, sdispls, sendtype,

recvbuf, recvcounts, rdispls, recvtype, comm)

sendbuf address of send buffer (void*)
sendcounts num. elements to send to others (int[nprocs])

sdispls displacements of send buffers (int[nprocs])
sendtype data type of send buf. elements (MPI_Datatype)
recvbuf address of receive buffer (void*)

recvcounts number of elements to receive from others (int[nprocs])
rdispls displacements of receive buffers (int[nprocs])
recvtype type of element to receive (MPI_Datatype)

comm communicator (MPI_Comm)

I generalizes MPI_Alltoall

I see emily.c

S.F. Siegel � CISC 372: Parallel Computing � MPI Collectives 13


