CISC 372: Parallel Computing
MPI Collectives

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware



The collective model of computation

» a collective operation is invoked by all processes in a communicator

S.F. Siegel o CISC 372: Parallel Computing o MPI Collectives 2



The collective model of computation

» a collective operation is invoked by all processes in a communicator

» some processes contribute data, some receive data, some operations may be performed

S.F. Siegel o CISC 372: Parallel Computing < MPI Collectives 2



The collective model of computation

» a collective operation is invoked by all processes in a communicator
» some processes contribute data, some receive data, some operations may be performed

» collective operations capture many commonly used parallel patterns

» one process broadcasts data to all
» add up values across processes and return the result to one process
» gather data from all processes into one big array on one process

S.F. Siegel < CISC 372: Parallel Computing < MPI Collectives 2



The collective model of computation

» a collective operation is invoked by all processes in a communicator
» some processes contribute data, some receive data, some operations may be performed

» collective operations capture many commonly used parallel patterns

» one process broadcasts data to all
» add up values across processes and return the result to one process
» gather data from all processes into one big array on one process

» many parallel algorithms can be expressed most easily using collectives

S.F. Siegel < CISC 372: Parallel Computing < MPI Collectives 2



The collective model of computation

» a collective operation is invoked by all processes in a communicator

» some processes contribute data, some receive data, some operations may be performed
» collective operations capture many commonly used parallel patterns
» one process broadcasts data to all
» add up values across processes and return the result to one process
» gather data from all processes into one big array on one process
» many parallel algorithms can be expressed most easily using collectives
» collective programs are easier to understand than point-to-point

» a higher-level, abstract, "big step” view of an algorithm
» all procs do this, then all procs do that, then all procs do, ...
» you can reason about them much like a sequential program

S.F. Siegel < CISC 372: Parallel Computing < MPI Collectives 2



The collective model of computation

» a collective operation is invoked by all processes in a communicator

» some processes contribute data, some receive data, some operations may be performed

» collective operations capture many commonly used parallel patterns

» one process broadcasts data to all

» add up values across processes and return the result to one process

» gather data from all processes into one big array on one process
» many parallel algorithms can be expressed most easily using collectives
» collective programs are easier to understand than point-to-point

» a higher-level, abstract, "big step” view of an algorithm
» all procs do this, then all procs do that, then all procs do, ...
» you can reason about them much like a sequential program

» MPI implementations have very optimized implementations of collectives
» these can be quite complicated, but the implementation details are hidden from the user

S.F. Siegel CISC 372: Parallel Computing < MPI Collectives 2



MPI_Reduce

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm)

sendbuf address of send buffer (voidx)

recvbuf address of recv buffer (root only, voidx)
count number of elements in send buffer (int)
datatype data type of elements in send buffer (MPI_Datatype)
op reduce operation (MPI_Op)

root rank of root process (int)
comm communicator (MPI_Comm)

Rank 0 sendbuf
Rank 1 sendbuf
Rank 2 sendbuf

Root recvbuf

> see reduce.c
S.F. Siegel < CISC 372: Parallel Computing

X00 X01 X02
X10 X11 X12
X20 X21 X22

Xo0 + X10 + X20

Xo1 + X11 + X21

X02 + X12 + X22

< MPI Collectives




Creating global synchronization points: MPI_Barrier

MPI_Barrier (comm)

comm communicator (MPI_Comm)

S.F. Siegel o CISC 372: Parallel Computing o MPI Collectives 4



Creating global synchronization points: MPI_Barrier

MPI_Barrier (comm)

comm communicator (MPI_Comm)

» blocks calling process until all processes in comm call MPI_Barrier

S.F. Siegel o CISC 372: Parallel Computing < MPI Collectives 4



Creating global synchronization points: MPI_Barrier

MPI_Barrier (comm)

comm communicator (MPI_Comm)

» blocks calling process until all processes in comm call MPI_Barrier
» if one process in comm calls MPI_Barrier (comm), all should
> else deadlock ensues

S.F. Siegel o CISC 372: Parallel Computing < MPI Collectives 4



Creating global synchronization points: MPI_Barrier

MPI_Barrier (comm)

comm communicator (MPI_Comm)

» blocks calling process until all processes in comm call MPI_Barrier
» if one process in comm calls MPI_Barrier (comm), all should
> else deadlock ensues
» explicit barriers are rarely needed; some exceptions. . .
» good practice: use barriers before calling MPI_Wtime
> ensures all processes have reached that point
> programs that use MPI_ANY_SOURCE (coming soon)
> barriers may be necessary to control how sends are matched with received

S.F. Siegel < CISC 372: Parallel Computing < MPI Collectives 4



Creating global synchronization points: MPI_Barrier

MPI_Barrier (comm)

comm communicator (MPI_Comm)

» blocks calling process until all processes in comm call MPI_Barrier
» if one process in comm calls MPI_Barrier (comm), all should
> else deadlock ensues
» explicit barriers are rarely needed; some exceptions. . .
» good practice: use barriers before calling MPI_Wtime
> ensures all processes have reached that point
> programs that use MPI_ANY_SOURCE (coming soon)
> barriers may be necessary to control how sends are matched with received
» using barriers to control order of printing from different procs is not reliable
» sometimes it works, sometimes it doesn't

S.F. Siegel < CISC 372: Parallel Computing < MPI Collectives 4



Broadcast: MPI_Bcast

MPI_Bcast(buffer, count, datatype, root, comm)

buffer address of buffer (voidx)
count number of elements in buffer (int)
datatype data type of elements in buffer (MPI_Datatype)
root rank of root process (int)
comm communicator (MPI_Comm)

» broadcasts a message from a single process (root) to all other processes in comm
» on root, buffer acts as a send buffer; on non-root procs, buffer acts as a receive buffer
» after return, buffer will contain the same data as that on root

» is a barrier (global synchronization point) induced?
» all procs must enter before any proc can exit 7

S.F. Siegel < CISC 372: Parallel Computing < MPI Collectives 5



Broadcast: MPI_Bcast

MPI_Bcast(buffer, count, datatype, root, comm)

buffer address of buffer (voidx)
count number of elements in buffer (int)
datatype data type of elements in buffer (MPI_Datatype)
root rank of root process (int)
comm communicator (MPI_Comm)

» broadcasts a message from a single process (root) to all other processes in comm
» on root, buffer acts as a send buffer; on non-root procs, buffer acts as a receive buffer
» after return, buffer will contain the same data as that on root
» is a barrier (global synchronization point) induced?
» all procs must enter before any proc can exit 7 No

P> see bcast.c

S.F. Siegel < CISC 372: Parallel Computing < MPI Collectives 5



MPI_Allreduce

MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)

sendbuf address of send buffer (voidx)
recvbuf address of recv buffer (voidx)
count number of elements in send buffer (int)
datatype data type of elements in send buffer (MPI_Datatype)
op reduce operation (MPI_Op)
comm communicator (MPI_Comm)

» just like MPI_Reduce, but no root
» instead, result is returned to all processes in comm

» equivalent to MPI_Reduce followed by MPI_Bcast
» barrier?

S.F. Siegel o CISC 372: Parallel Computing < MPI Collectives 6



MPI_Allreduce

MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)

sendbuf address of send buffer (voidx)
recvbuf address of recv buffer (voidx)
count number of elements in send buffer (int)
datatype data type of elements in send buffer (MPI_Datatype)
op reduce operation (MPI_Op)
comm communicator (MPI_Comm)

» just like MPI_Reduce, but no root

» instead, result is returned to all processes in comm
» equivalent to MPI_Reduce followed by MPI_Bcast
» barrier? yes

S.F. Siegel o CISC 372: Parallel Computing < MPI Collectives 6



MPI_Scatter

MPI_Scatter(sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root, comm)

sendbuf address of send buffer (root only, voidx)
sendcount num. elements sent to each proc (root, int)
sendtype data type of send buf. elements (root, MPI_Datatype)
recvbuf address of receive buffer (voidx)
recvcount number of elements in recv buffer (int)
recvtype type of data to receive (MPI_Datatype)
root rank of sending process (int)
comm communicator (MPI_Comm)

» similar to broadcast: the root sends, everyone else receives
» but: root sends a different block of sendbuf to each proc
» rank O gets the first sendcount elements, rank 1 gets the next sendcount elements ...

» number of elements in sendbuf is nprocs*sendcount; see scatter.c

S.F. Siegel < CISC 372: Parallel Computing < MPI Collectives 7



MPI_Scatterv
MPI_Scatterv(sendbuf, sendcounts, displs, sendtype,

sendbuf
sendcounts
displs
sendtype
recvbuf
recvcount
recvtype
root

comm

recvbuf, recvcount, recvtype, root, comm)

address of send buffer (root only, voidx)

num. elements sent to each proc (root only, int [nprocs])
displacements for each proc (root only, int [nprocs])

data type of send buf. elements (root only, MPI_Datatype)
address of receive buffer (voidx)

number of elements in recv buffer (int)

type of data to receive (MPI_Datatype)

rank of sending process (int)

communicator (MPI_Comm)

» generalizes MPI_Scatter: the amount of data sent to each process can vary

» sendcounts[i] = number of elements to send to proc i

» displs[i] = offset of send buffer for proc i relative to sendbuf

S.F. Siegel < CISC 372: Parallel Computing < MPI Collectives 8



MPI_Gather

MPI_Gather(sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root, comm)

sendbuf address of send buffer (voidx)
sendcount num. elements to send (int)
sendtype data type of send buf. elements (MPI_Datatype)
recvbuf address of receive buffer (root only, voidx)
recvcount number of elements to recv from each proc (root, int)
recvtype type of data to receive (root, MPI_Datatype)
root rank of receiving process (int)
comm communicator (MPI_Comm)

» inverse of MPI_Scatter: everyone sends to root, root receives from everyone
» root receives into a different block of recvbuf for each proc

P> rank 0's message goes into first recvcount elements

» rank 1's message goes into next recvcount elements .

> number of elements in recvbuf is n rocs*recvcount
S.F. Siegel C 372: Parallel Computing < MPI Collectives



MPI_Allgather
MPI_Allgather (sendbuf, sendcount, sendtype,

sendbuf
sendcount
sendtype
recvbuf
recvcount
recvtype
comm

recvbuf, recvcount, recvtype, comm)

address of send buffer (voidx)

num. elements to send (int)

data type of send buf. elements (MPI_Datatype)
address of receive buffer (voidx)

number of elements to recv from each proc (int)
type of data to receive (MPI_Datatype)
communicator (MPI_Comm)

» like MPI_Gather done once for each proc

S.F. Siegel < CISC 372: Parallel Computing < MPI Collectives 10



MPI_Gatherv
MPI_Gatherv(sendbuf, sendcount, sendtype,

sendbuf
sendcount
sendtype
recvbuf
recvcounts
displs
recvtype
root

comm

recvbuf, recvcounts, displs, recvtype, root, comm)

address of send buffer (voidx)

num. elements to send (int)

data type of send buf. elements (MPI_Datatype)

address of receive buffer (root, voidx)

number of elements to recv from each proc (root, int [nprocs])
displacements of receive buffers (root, int [nprocs])

type of data to receive (root, MPI_Datatype)

rank of receiving process (int)

communicator (MPI_Comm)

» generalizes MPI_Gather

» the amount sent by each process can vary

P> see gatherv.c

S.F. Siegel < CISC 372: Parallel Computing < MPI Collectives 11



MPI_Alltoall
MPI_Alltoall(sendbuf, sendcount, sendtype,

sendbuf
sendcount
sendtype
recvbuf
recvcount
recvtype
comm

recvbuf, recvcount, recvtype, comm)

address of send buffer (voidx)

num. elements to send (int)

data type of send buf. elements (MPI_Datatype)
address of receive buffer (voidx)

number of elements to receive on each proc (int)
type of element to receive (MPI_Datatype)
communicator (MPI_Comm)

> every process sends distinct buffers to all others

» amount of data sent to each process is the same

» symmetric (no root)

S.F. Siegel < CISC 372: Parallel Computing < MPI Collectives 12



MPI_Alltoallv
MPI_Alltoallv(sendbuf, sendcounts, sdispls, sendtype,

sendbuf
sendcounts
sdispls
sendtype
recvbuf
recvcounts
rdispls
recvtype
comm

recvbuf, recvcounts, rdispls, recvtype, comm)

address of send buffer (voidx)

num. elements to send to others (int [nprocs])
displacements of send buffers (int [nprocs])

data type of send buf. elements (MPI_Datatype)

address of receive buffer (voidx)

number of elements to receive from others (int [nprocs])
displacements of receive buffers (int [nprocs])

type of element to receive (MPI_Datatype)

communicator (MPI_Comm)

» generalizes MPI_Alltoall

> see emily.c

S.F. Siegel < CISC 372: Parallel Computing < MPI Collectives 13



