CISC 372: Parallel Computing
Exam 1 Review

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

Ghost cells

» when do you need ghost cells?
» an algorithm requires data on its nearest neighbors
» the typical scenario
» block distributed array a
> the update function for a[i] requires the left and/or right neighbor
> afi] = ... ali-1] ... ali+1]
» on each proc, the left neighbor of the left-most cell is on another proc
» ditto for the right
» solution: create ghost cells to mirror those neighbors
» just before updating, exchange ghost cells

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 2

Nearest neighbor communication and Pascal’s triangle

Usual representation:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
Computer representation:
0 0001 0 O0O0CTO0
0 001 01 0 0O
0 01 020100
0 1.0 3 03 010
1 0 4 0 6 0 4 0 1

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review 3

Pascal: sequential implementation

» see pascal.c
» two arrays are used

» one always holds the current value
» the other holds the previous value

» note use of pointer swapping
» note the update function has nearest neighbor dependency
> for (int j=1; j<2xN; j++) ql[j] = pl[j-11+p[j+1]

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review 4

Pascal: ghost cell exchange

T6[Tolalo}" ri[elelola}” fo[alelis}
0 53 N 3 N (1 3 1

» the length of the array on proc r is NUM_OWNED(r) + 2
» indexes are shifted up by 1; see pascal_mpi.c

» diffusionld.c: same issue: u_newl[i] = ul[i] + kx(u[i+1] + uli-1] - 2*u[i])
S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 5

2-d Diffusion

» a metal unit square
> initially 100°
> temperature on perimeter kept at 0°

» u = u(x,y,t) temperature function

ou <82u
=«

» 2d diffusion equation

ot 0x2
» discretization

u_new[i] [j]1 = wuli]l[j]
+ kx(uli+1] [j] + uli-11[j]

L P
Oy?

+ ulil [j+1] + ulil[j-11 - 4*ulil[j1);

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 6

Parallelization of diffusion2d

» how to distribute the 2d spatial domain?

S.F. Siegel o CISC 372: Parallel Computing o Exam 1 Review

Parallelization of diffusion2d

» how to distribute the 2d spatial domain?
» ‘“striped” decompositions

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review

Parallelization of diffusion2d

» how to distribute the 2d spatial domain?

» ‘“striped” decompositions
» apply the Standard Block Distribution Scheme to the columns

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review 7

Parallelization of diffusion2d

» how to distribute the 2d spatial domain?

» ‘“striped” decompositions
» apply the Standard Block Distribution Scheme to the columns

» “column distribution”

each process gets a certain number of x values

a ghost cell column on the left and on the right

exchange ghost columns after each time step

the entire column should be sent as one message

this is much more efficient than sending each cell in its own message

vyvVvyyvVyyYy

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 7

Parallelization of diffusion2d

» how to distribute the 2d spatial domain?

» ‘“striped” decompositions
» apply the Standard Block Distribution Scheme to the columns
» “column distribution”
> each process gets a certain number of x values
> a ghost cell column on the left and on the right
» exchange ghost columns after each time step
» the entire column should be sent as one message
» this is much more efficient than sending each cell in its own message
» apply the Standard Block Distribution Scheme to the rows

» “row distribution”
> .

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 7

2d Diffusion: column distribution

L [
.
L L L
.
L L
L L
L [
.
L L L
.
L L
- - ‘e - ‘o

2d Diffusion: row distribution

2d Diffusion: checkerboard decomposition

[)] [
0
[- L
0
. - :
0
[o L
0
.. - .
[)] [
PR B B B L I B B

[)] [
0
[- L
0
. - :
[o L
0
.. - .
[)] [
PR B B B L I B B

» 4 ghost regions for each process

» 4 exchanges: up, down, left, right

S.F. Siegel CISC 372: Parallel Computing Exam 1 Review 10

Outline

1. introduction
> Moore's law, N/UMA, clusters vs. multicore, power
» message-passing vs. shared-memory models

2. UNIX basics
> file system, 1s, pwd, mkdir, make, ...

3. C

» preprocessor, compiler, linker
> types, declarations, function definitions, pointers, malloc/free, multi-dimensional arrays

4. MPI

» startup, shutdown, communicators, rank, size
» point-to-point: send, receive, wildcards, semantics, deadlock
» collectives

5. distribution strategies: cyclic, block, manager-worker
6. applications: SAT, Pascal, diffusionld/2d

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 11

C: Pointers

a pointer is the address of a memory location
pointers are first-class objects in C

there are pointer types
a pointer can be passed as an argument in a function call

a pointer can be returned by a function

>

>

>

» a pointer can be assigned using =

>

>

» there are operations which consume pointers and return pointers
>

a pointer is just like any other kind of data

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 12

Pointer types

» declaration
> if T(x) declares x to have type T
> then T(*p) declares p to have type pointer-to-T
» declaration examples
> double *p
» T(x) = double x
» T(*p) = double *p
» p has type pointer-to-double
» unsigned long int *p
» T(x)=unsigned long int x
» T(*p) = unsigned long int *p
» p has type pointer-to-unsigned-long-int

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review 13

Pointer operations

There are two basic operations on pointers:
» address-of (&)

» given a variable, returns the address of that variable

» if x has type T then &x has type pointer-to-T
> example

> int x;
int *p = &x; // address of x
» dereference (*)

P given a pointer, returns the value stored at that address

» if p has type pointer-to-T then *p has type T
P> example

> int x = 5;
int *p = &x;
int y = 2 *x (xp); // 10

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review 14

Pointer operations, cont

» *p can also be used on the left-hand side of an assignment

double x = 3.1415;

double *p = &x;

*p = 2.71828;

printf ("%1f", x); // 2.71828

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review 15

Pointers into arrays

» you can also take the address of array elements

float a[10];
float *p = &al[5];
*p = 17;

17

le—>i
sizeof(float)

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review 16

Pointer into 2d-array

int a[2][3];
int *p = &al[0][2];
*p = 13;

[

a[0][0]

al@][1]

al@][2]

a[1][e]

a[1][1]

a[1][2]

fe————=i

sizeof(int)

i

13

17

Pointer arithmetic

if all of the following hold
» pis an expression of type pointer-to-T
> jis an expression of integer type
» T is a complete type (size of T is known!!)
then
» p+i is an expression of type pointer-to-T
» it points to the address that isi T's past p
» if sizeof (T) is n bytes, then p+i is i/ % n bytes after p

float a[10];
float *p = &a[0], *q = p+3, *r = q+7;
p q r
\ \4 A\
fe—si
sizeof(float)

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 18

Pointer arithmetic within a 2d-array

int a[2] [3];
int *p = &a[0][2];

int *q = p+2; // q == &al[1][1]

S.F. Siegel o CISC 372: Parallel Computing

p q
\ 4 \ 4
afe]fe] | al[eo][1] al@][2] | a[1l[e] | al1][1] | a[11[2]
fe——>i
sizeof(int)
< Exam 1 Review 19

The real meaning of the index operator [..

The meaning of x[y]:
» x[y] is syntactic sugar for * (x+y)
» if p is a pointer-to-T, then p[i] means *(p+i)
> recall: this can be used to read or write to location p+i

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review 20

Example: index operator and pointers

#include <stdio.h>

/* assigns val to p[il, ..., pli+n-1] %/
void set_range(int *p, int n, int val) {
for (int i=0; i<n; i++) pl[il = val;

}

/* prints p[0], ..., p[n-1] */

void print(int *p, int n) {
for (int i=0; i<n; i++) printf("/d ", pl[il);
printf ("\n");

}

int main() {
int a[10];
set_range(&a[0], 10, 0); // al[0..9]1=0
print (&a[0], 10);
set_range(&a[3], 5, 8); // al3..7]1=8
print(&al[0], 10);

basie:
basie:
000
000
basie:

O 00 O o0 o

siegel$ cc ptrl.c
siegel$./a.out
0000O00O
888800

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review

21

C's array-pointer “pun”

In most contexts:
» any expression of type array-of-T is automatically converted to an expression of type
pointer-to-T
» pointing to the first (i.e., 0-th) element of the array
» i.e. a and &a[0] denote the same thing
> the pointer to element 0 of array a

#include <assert.h>

int main() {
int a[10];
int *p;
p = a; // same as p=&al0]
assert(a[3] == *(p+3));
assert(a[3] == *(a+3));

}

Exceptions: sizeof and a few other places

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review 22

C's array pointer pun, cont.

» any formal parameter in a function header of type array-of-T is converted to type
pointer-to-T
» example: the following all mean exactly the same thing:
» int f(double *a);

» int f(double all);
> int f(double a[1000]);

» the 1000 is simply ignored
» no reason to do this, unless it is as documentation

» one difference: an array can not occur on left side of =

> int a[10];
int b[10];
int *p;

p = a; // yes
p =b; // yes
a = p; // no!
a ="b; // no!

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review 23

Allocating sequences of data

Multiple ways:

1. double a[10];
» in the file scope
> allocates an array that persists for the entire life of the program
» can be accessed in any scope
» length must be a constant expression
» cannot be used if length is unknown at compile time

2. double aln];
» in a local scope
> allocates an array that persists until the end of that scope is reached
P can be accessed in that scope and sub-scopes, and through pointers
» length can be any integer expression

3. malloc and free
» dynamic memory allocation
» memory allocated in the heap
> programmer controls when allocation and deallocation occur

> all accesses through pointers
S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 24

Heap allocation: malloc and free

» malloc and free are functions defined in stdlib

» malloc
» consumes argument of integer type
» the number of bytes to allocate

» allocates that many bytes in the heap
> returns void*

» address of first byte allocated
> typically, this is converted immediately into a non-void pointer type

P> example
> int *p = (int*)malloc(10*sizeof(int));
> allocates space for 10 ints and returns pointer to beginning of that region
> free

P> consumes a void* pointer previously produced by malloc
» deallocates the object

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 25

Heap allocation: example

#include <stdlib.h>

#include <assert.h>

#include <stdio.h>

void print(int *p, int n) {
for (int i=0; i<n; i++) printf("%d ", plil);
printf ("\n");

}

int main(int argc, char * argv[]) {
int n = atoi(argv([1]); // converts first command-line arg to int
int * p = (int*)malloc(n*sizeof(int));
assert(p); // check that malloc succeeded
for (int i=0; i<n; i++) pl[i] = i;
print(p, n);
free(p);

basie:c siegel$ cc mallocl.c
basie:c siegel$./a.out 10
0123456789

basie:c siegel$

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review 26

Structures

The following defines a new type named struct Show:

struct Show {
int channel; // this is an int field
char * name; // this is a string field
double cost; // this is a double field
};

struct Show show;
show.channel = 10;
show.name = "The 372 Show";
show.cost = 100000.00;

> struct Show is a type just like any other type

» can be used to declare variables, as function parameter type, can be returned by a
function, ...

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 27

Structures, cont.

It may be convenient to give the new type a shorter name:

typedef struct _show {
int channel; // this is an int field
char * name; // this is a string field
double cost; // this is a double field
} Show;

» now you can just use Show instead of struct _show
» note: you can use the same name for the struct and the new type
> typedef struct X { ...} X;

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 28

Structures and pointers

» structures are often manipulated using pointers
» functions consuming a structure typically consume a pointer to the structure

» functions returning structures typically return a pointer to a structure

int getChannel(Show * show) {
return (*show).channel;

}

void setChannel (Show * show, int c) {
(*show) .channel = c;

}

» this pattern is so popular that C provides a shortcut
P> s->x is syntactic sugar for (*s) .x

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 29

Structures and pointers, cont.

OK:
int getChannel(Show * show) {
return (*show).channel;
}
void setChannel (Show * show, int c) {
(*show) .channel = c;
}
Better:

int getChannel(Show * show) {
return show->channel;

}

void setChannel (Show * show, int c) {
show->channel = c;

}

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review 30

Arrays of structures

» one can create an array of structures, or
» one can create an array of pointers to structures.

Each has advantages (and disadvantages).

Show *shows[n]; // array of pointer to Show
for (int i=0; i<m; i++) {
Show * s = (Show*)malloc(sizeof (Show));
s—->channel = i;
shows[i] = s;

}

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 31

MPI Program Model

an MPI program consists of multiple processes
each process has its own memory (no shared memory)
think of each process as a program running on its own computer

the computers can have different architectures

vvyyvyyVvVyy

the programs do not even have to be written in the same language
» MPI officially supports C and Fortran

v

however, in most cases:

» programmer writes one generic program
compiles this

at run-time, specifies number of processes
run-time system

vvyy

> instantiates that number of processes
> distributes them where they need to go

v

a process can obtain its unique ID (“rank™)

» by branching on rank, each process can execute different code

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 32

Cyclic Distribution

Generalize

Given any number of tasks.
Given p processes.

Distribute the tasks cyclically:

» proc0: 0, p, 2p, ...

> procl: 1, p+1,2p+1,...
> proc2: 2, p+2,2p+2, ...
> etc.

l.e., proc i gets tasks t, where t%p = i.
See satl.c, Makefile.

» good for most embarrassingly parallel problems
» generally effective when longer tasks tend to occur next to each other

» for problems that require nearest-neighbor communicaton: don’t use this

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 33

MPI_Send

MPI_Send(buf, count, datatype, dest, tag, comm)

buf address of send buffer (voidx)
count number of elements in buffer (int)
datatype data type of elements in buffer (MPI_Datatype)
dest rank of destination process (int)
tag integer to attach to message envelope (int)
comm communicator (MPI_Comm)

» message envelope

» source rank

» destination rank
> tag

» communicator

» tag can be used by receiver to select which message to receive

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 34

MPI_Recv

MPI_Recv(buf, count, datatype, source, tag, comm, status)

buf address of send buffer (voidx)
count number of elements in buffer (int)
datatype data type of elements in buffer (MPI_Datatype)
source rank of source process (int)
tag tag of message to receive (int)
comm communicator (MPI_Comm)
status pointer to status object (MPI_Status*)

» count must be at least as large as count of incoming message

> status: object to store envelope information on received message
» source, tag, count

» why would you need to know source and tag?

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 35

Using “wildcards” in MPI_Recv

MPI_Recv(buf, count, datatype, source, tag, comm, status)

» source argument can be MPI_ANY_SOURCE
» special constant defined by MPI
» means “receive message from any source”
P use with care
» introduce nondeterminism into the parallel program
» program can produce different results on different executions
> sometimes this is necessary (dynamic load-balancing)
» do not use unless necessary for algorithm

» tag argument can be MPI_ANY_TAG

P> ‘“receive message with any tag”
> this one does not introduce nondeterminism

» can use neither, either, or both in one receive operation

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 36

Getting the status

status is a C struct

S.F. Siegel

<&

CISC 372: Parallel Computing

o

Exam 1 Review

37

Getting the status

status is a C struct
» getting the rank of the source
» status.MPI_SOURCE

S.F. Siegel o CISC 372: Parallel Computing o

Exam 1 Review

37

Getting the status

status is a C struct
» getting the rank of the source
» status.MPI_SOURCE

» getting the tag of the message
> status.MPI_TAG

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review

37

Getting the status

status is a C struct
» getting the rank of the source
» status.MPI_SOURCE

» getting the tag of the message
> status.MPI_TAG

» getting the error code
» status.MPI_ERROR

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review

37

Getting the status

status is a C struct
» getting the rank of the source
» status.MPI_SOURCE
» getting the tag of the message
> status.MPI_TAG
» getting the error code
» status.MPI_ERROR
> getting the size (“count”) of the message

» not simply a field in the struct
» need to use function MPI_Get_count

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 37

Example: status.c

#include<string.h>
#include<stdio.h>
#include<mpi.h>

int main() {
char message[100];
int rank;
MPI_Status status;

MPI_Init(NULL, NULL);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (rank == 0) {
strcpy(message, "Hello, from proc 0!");
MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);
} else if (rank == 1) {
MPI_Recv(message, 100, MPI_CHAR, O, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
printf ("Proc 1 received: \"%s\"\n", message);
printf ("source=%d tag=/%d \n", status.MPI_SOURCE, status.MPI_TAG);
}
MPI_Finalize();

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 38

status.c output

Note that in C, a string is a sequence of char ending with the “null terminating char” ’\0’.
The number of characters in the string is therefore strlen(message) + 1 =19+ 1= 20.

> mpiexec status.exec
Proc 1 received: "Hello, from proc O!"
source=0 tag=99

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 39

MPI_Get_count

MPI_Get_count(status, datatype, count)
status pointer to status object (MPI_Status*)

datatype data type of elements received (MPI_Datatype)
count pointer to variable in which to return result (int*)

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review 40

MPI_Get_count

MPI_Get_count(status, datatype, count)

status pointer to status object (MPI_Status*)
datatype data type of elements received (MPI_Datatype)
count pointer to variable in which to return result (int*)

» should only be called after status has been filled in by receive

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 40

MPI_Get_count

MPI_Get_count(status, datatype, count)

status pointer to status object (MPI_Status*)
datatype data type of elements received (MPI_Datatype)
count pointer to variable in which to return result (int*)

» should only be called after status has been filled in by receive

» datatype should be same as used in receive

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 40

MPI_Get_count

MPI_Get_count(status, datatype, count)

status pointer to status object (MPI_Status*)
datatype data type of elements received (MPI_Datatype)
count pointer to variable in which to return result (int*)

» should only be called after status has been filled in by receive
» datatype should be same as used in receive

» sets count to the number of elements received

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 40

MPI_Get_count

MPI_Get_count(status, datatype, count)

status pointer to status object (MPI_Status*)
datatype data type of elements received (MPI_Datatype)
count pointer to variable in which to return result (int*)
should only be called after status has been filled in by receive
datatype should be same as used in receive

sets count to the number of elements received

vvyyvYyy

note

P count specified in receive statement and message count can differ
» receive buffer must be big enough to hold incoming message
» memory in receive buffer after message count will not be altered

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 40

Example: getting the count: count.c

The following lines are added to proc 1:

int count;

MPI_Get_count (&status, MPI_CHAR, &count);

printf ("source=)d tag=%d count=Yd\n",
status.MPI_SOURCE, status.MPI_TAG, count);

S.F. Siegel o CISC 372: Parallel Computing < Exam 1 Review 41

Example: getting the count: count.c

The following lines are added to proc 1:

int count;

MPI_Get_count (&status, MPI_CHAR, &count);

printf ("source=)d tag=%d count=Yd\n",
status.MPI_SOURCE, status.MPI_TAG, count);

This sets count to the actual number of characters (MPI_CHAR) received.

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 41

Example: getting the count: count.c

The following lines are added to proc 1:

int count;

MPI_Get_count (&status, MPI_CHAR, &count);

printf ("source=)d tag=%d count=Yd\n",
status.MPI_SOURCE, status.MPI_TAG, count);

This sets count to the actual number of characters (MPI_CHAR) received.

> mpiexec -n 4 ./count.exec
Proc 1 received: "Hello, from proc O!"
source=0 tag=99 count=20

Note the null terminating character is counted.

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 41

Point-to-point

MPI_STATUS_IGNORE is

A.

mUnw

a type

a function
a constant
a variable

a type qualifier

S.F. Siegel o CISC 372: Parallel Computing

<

Exam 1 Review

42

Point-to-point semantics

Each of the following program fragments attempts to have two processes exchange data. In
each case, state which of the following is true:

A. the fragment will definitely deadlock
B. the fragment will definitely not deadlock

C. the fragment may or may not deadlock

if (rank == 0) {
MPI_Send (&myNumber, 1, MPI_INT, 1, 9, comm);
MPI_Recv(&otherNumber, 1, MPI_INT, 1, 9, comm, &status);
} else if (rank == 1) {
MPI_Send(&myNumber, 1, MPI_INT, O, 9, comm);
MPI_Recv(&otherNumber, 1, MPI_INT, O, 9, comm, &status);
}

S.F. Siegel CISC 372: Parallel Computing Exam 1 Review 43

Point-to-point semantics

if (rank == 0) {
MPI_Recv(&otherNumber, 1, MPI_INT, 1, 9, comm, &status);
MPI_Send(&myNumber, 1, MPI_INT, 1, 9, comm);

} else if (rank == 1) {
MPI_Recv(&otherNumber, 1, MPI_INT, O, 9, comm, &status);
MPI_Send (&myNumber, 1, MPI_INT, O, 9, comm);

}

A. the fragment will definitely deadlock
B. the fragment will definitely not deadlock

C. the fragment may or may not deadlock

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 44

Point-to-point semantics

if (rank == 0) {
MPI_Send(&myNumber, 1, MPI_INT, 1, 9, comm);
MPI_Recv(&otherNumber, 1, MPI_INT, 1, 9, comm, &status);
} else if (rank == 1) {
MPI_Recv(&otherNumber, 1, MPI_INT, O, 9, comm, &status);
MPI_Send (&myNumber, 1, MPI_INT, O, 9, comm);
}

A. the fragment will definitely deadlock
B. the fragment will definitely not deadlock

C. the fragment may or may not deadlock

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 45

Point-to-point semantics

if (rank == 0) {
MPI_Sendrecv(&myNumber, 1, MPI_INT, 1, 9,
&otherNumber, 1, MPI_INT, 1, 9, comm, &status);
} else if (rank == 1) {
MPI_Sendrecv(&myNumber, 1, MPI_INT, O, 9,
&otherNumber, 1, MPI_INT, O, 9, comm, &status);

A. the fragment will definitely deadlock
B. the fragment will definitely not deadlock

C. the fragment may or may not deadlock

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 46

Point-to-point semantics

if (rank == 0) {
MPI_Send(&myNumber, 1, MPI_INT, 1, 3, comm);
MPI_Recv(&otherNumber, 1, MPI_INT, 1, 4, comm, &status);
} else if (rank == 1) {
MPI_Send(&myNumber, 1, MPI_INT, O, 4, comm);
MPI_Recv(&otherNumber, 1, MPI_INT, O, 3, comm, &status);
}

A. the fragment will definitely deadlock
B. the fragment will definitely not deadlock

C. the fragment may or may not deadlock

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 47

Point-to-point semantics

In a correct MPI program, the length of the receive buffer used in an MPI_Recv...
A. must be exactly equal to the length of the incoming message
B. must be greater than or equal to the length of the incoming message

C. may be any number; if the length of the buffer is less than the length of the incoming
message, the message will be truncated

D. must be at least one greater than the length of the incoming message

E. must be less than or equal to the length of the incoming message

48

int

main(int argc, char **xargv) {

int rank, x, y; MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {

}

x = 10; y = 11;
MPI_Send(&x, 1, MPI_INT, 1, 9, MPI_COMM_WORLD);

MPI_Send(&y, 1, MPI_INT, 2, 9, MPI_COMM_WORLD);

else if (rank == 1) {

MPI_Recv(&x, 1, MPI_INT, MPI_ANY_SOURCE, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Recv(&y, 1, MPI_INT, MPI_ANY_SOURCE, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf ("%d %d\n", x, y); fflush(stdout);

else if (rank == 2) {

x=20;

MPI_Recv(&y, 1, MPI_INT, O,
MPI_Send(&x, 1, MPI_INT, 1,

MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;

9,
9, MPI_COMM_WORLD) ;

MPI_Finalize();

the program will never deadlock and the output will always be 10 20

the program will never deadlock and the output may be 10 20 or 20 10

it is possible for the program to deadlock; when it does not deadlock it will output 10 20

the program will always deadlock

it is possible for the program to deadlock, it is possible for it to output 10 20, and it is possible for it to output 20

CISC 372: Parallel Computing < Exam 1 Review 49

10

Collective operations
example: want to print the total number of solutions found
each process can count its solutions

| 2
>
» then we need to add up these numbers across all processes
» this obviously requires communication

| 2

an example of a collective operation
» a communication operation involving all processes in a communicator

» to carry out a collective operation in MPI:

» each process calls the same function
» some arguments will be the same for all processes
> some will differ

» non-interference: collective communication and p2p communication in two separate
universes

» synchronization: no synchronization implied by collectives except what is logically necessary

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 50

Collectives

A program contains a call to MPI_Bcast with data type MPI_DOUBLE used on every process.
Which of the following must be true if the program is correct:

A.

the count argument used on a non-root process must be exactly equal to the count on
the root

. the count arguments used on non-root processes can differ, as long as they are all greater

than or equal to the count on the root

. the count on all the non-root processes must be the same number, but that number may

be larger than the count used on the root

. the count on all the non-root processes must be the same number, but that number may

be at least one larger than the count used on the root

. the count values on the non-root processes can be any numbers; if they are smaller than

the count on the root, the message will just be truncated.

51

int

main(int argc, char **xargv) {

int rank, x, y; MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {

}

x = 10; y = 11;

MPI_Send(&x, 1, MPI_INT, 1, 10, MPI_COMM_WORLD);

MPI_Send(&y, 1, MPI_INT, 2, 9, MPI_COMM_WORLD);

else if (rank == 1) {

MPI_Recv(&x, 1, MPI_INT, MPI_ANY_SOURCE, 11, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Recv(&y, 1, MPI_INT, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf ("%d %d\n", x, y); fflush(stdout);

else if (rank == 2) {

x = 20;

MPI_Recv(&y, 1, MPI_INT, O, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Send(&x, 1, MPI_INT, 1, 11, MPI_COMM_WORLD);

MPI_Finalize();

the program will never deadlock and the output will always be 20 10

the program will never deadlock and the output may be 10 20 or 20 10

it is possible for the program to deadlock, but when it does not, it will output 20 10

the program will always deadlock

it is possible for the program to deadlock, it is possible for it to output 10 20, and it is possible for it to output 20

CISC 372: Parallel Computing < Exam 1 Review 52

10

Applications

Consider a diffusionld program. Suppose that the length of the global temperature array is
100 (including boundary values), and the program is executed with 10 processes. What is the
maximum number of ghost cells stored on any one process?

A0

1

2
10
100

moU O

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 53

Applications

Consider a row-distributed diffusion2d program. Suppose that the dimensions of the global
temperature matrix is 100 x 100 (including boundaries), and the program is executed with 10
processes. What is the maximum number of ghost cells stored on any one process?

Al

2
10
100
200

moU O

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 54

Collectives

Suppose every process in a communicator calls MPI_Allreduce (correctly) with MPI_SUM as
the reduction operation. Does this necessarily induce a barrier? (Y/N)
A. Yes

B. No

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 55

Collectives

Suppose every process in a communicator calls MPI_Bcast (correctly). Does this necessarily
induce a barrier? (Y/N)

A. Yes

B. No

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 56

int

main(int argc, char **xargv) {

int rank, x, y; MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {

}

x = 10; y = 11;

MPI_Send(&x, 1, MPI_INT, 1, 10, MPI_COMM_WORLD);

MPI_Send(&y, 1, MPI_INT, 2, 9, MPI_COMM_WORLD);

else if (rank == 1) {

MPI_Recv(&x, 1, MPI_INT, MPI_ANY_SOURCE, 10, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Recv(&y, 1, MPI_INT, MPI_ANY_SOURCE, 11, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf ("%d %d\n", x, y); fflush(stdout);

else if (rank == 2) {

x = 20;

MPI_Recv(&y, 1, MPI_INT, O, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Send(&x, 1, MPI_INT, 1, 11, MPI_COMM_WORLD);

MPI_Finalize();

the program will never deadlock and the output will always be 10 20

the program will never deadlock and the output may be 10 20 or 20 10

it is possible for the program to deadlock, but when it does not, it will output 10 20

the program will always deadlock

it is possible for the program to deadlock, it is possible for it to output 10 20, and it is possible for it to output 20

CISC 372: Parallel Computing < Exam 1 Review 57

10

Distribution

For the following, suppose an array of length n (indexed from 0 to n — 1) is block-distributed
over p processes (with ranks 0,..., p — 1) using the standard block-distribution scheme.

S.F. Siegel < CISC 372: Parallel Computing < Exam 1 Review 58

Distribution

For the following, suppose an array of length n (indexed from 0 to n — 1) is block-distributed
over p processes (with ranks 0,..., p — 1) using the standard block-distribution scheme.

What is the formula first(i) for the global index of the first element on process i?

S.F. Siegel CISC 372: Parallel Computing < Exam 1 Review 58

Distribution

For the following, suppose an array of length n (indexed from 0 to n — 1) is block-distributed
over p processes (with ranks 0,..., p — 1) using the standard block-distribution scheme.

What is the formula first(i) for the global index of the first element on process i?

first(i) = floor(in/p)

S.F. Siegel CISC 372: Parallel Computing < Exam 1 Review 58

Distribution

For the following, suppose an array of length n (indexed from 0 to n — 1) is block-distributed
over p processes (with ranks 0,..., p — 1) using the standard block-distribution scheme.

What is the formula first(i) for the global index of the first element on process i?

first(i) = floor(in/p)

What is the formula for the rank i of the process controlling the element with global index j?

58

Distribution

For the following, suppose an array of length n (indexed from 0 to n — 1) is block-distributed
over p processes (with ranks 0,..., p — 1) using the standard block-distribution scheme.

What is the formula first(i) for the global index of the first element on process i?

first(i) = floor(in/p)

What is the formula for the rank i of the process controlling the element with global index j?

owner(j) = floor((p(j + 1) — 1)/n)

58

Distribution

For the following, suppose an array of length n (indexed from 0 to n — 1) is block-distributed
over p processes (with ranks 0,..., p — 1) using the standard block-distribution scheme.

What is the formula first(i) for the global index of the first element on process i?

first(i) = floor(in/p)

What is the formula for the rank i of the process controlling the element with global index j?

owner(j) = floor((p(j + 1) — 1)/n)

What is the formula for the local index k of the element with global index ;7

58

Distribution

For the following, suppose an array of length n (indexed from 0 to n — 1) is block-distributed
over p processes (with ranks 0,..., p — 1) using the standard block-distribution scheme.

What is the formula first(i) for the global index of the first element on process i?

first(i) = floor(in/p)

What is the formula for the rank i of the process controlling the element with global index j?

owner(j) = floor((p(j + 1) — 1)/n)

What is the formula for the local index k of the element with global index ;7
J — first(owner(j))

58

#include<stdio.h>
#include<mpi.h>
int main(int argc, char **xargv) {
int rank, x=1;
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (rank == 0) {
MPI_Send(&x, 1, MPI_INT, 1, 9, MPI_COMM_WORLD);
} else if (rank == 1) {
MPI_Recv(&x, 1, MPI_INT, MPI_ANY_SOURCE, 9, MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
printf ("Message received.\n");

A. When run with 2 or more processes, the program will never deadlock and will output “Message received.”.

. When run with more than 2 processes, the program may or may not deadlock; if it does not deadlock it will output
“Message received.”.

C. When run with more than 2 processes, the program will deadlock.
D. When run with 1 process, the program will always terminate normally without printing anything.

. The program is incorrect.
S.F. Siegel CISC 372: Parallel Computing < Exam 1 Review 59

	Ghost cells
	Outline
	C
	MPI

