CISC 372: Parallel Computing
Threads, part 2: data races, mutexes, and critical sections

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

Next example: add_pthread.c

» should sum integers from 1 to n

» where n is the number of threads created
» nis the command line arg

» result should be n(n+1)/2

S.F. Siegel o CISC 372: Parallel Computing < Threads

add_pthread.c

S.F. Siegel

int nthreads; // number of threads to create
int sum = 0;
void* hello(void* arg) {
int * tidp = (int*)arg;
sum += (xtidp)+1;
return NULL;
}
int main(int argc, char *argv[]) {
nthreads = atoi(argv[1]);
pthread_t threads[nthreads];
int tids[nthreads];
for (int i=0; i<nthreads; i++) tids[i] = i;
for (int i=0; i<nthreads; i++)
pthread_create(threads + i, NULL, hello, tids + i);
for (int i=0; i<nthreads; i++)
pthread_join(threads[i], NULL);
printf("The sum is %d\n", sum);

}

CISC 372: Parallel Computing < Threads 3

Testing add_pthread.c

basie:add siegel$.
The sum is 210
basie:add siegel$.
The sum is 210
basie:add siegel$.
The sum is 210
basie:add siegel$.
The sum is 210

/add_pthread.
/add_pthread.
/add_pthread.

/add_pthread.

exec

exec

exec

exec

20

20

20

20

The program must be correct, right?

S.F. Siegel

<

CISC 372: Parallel Computing < Threads

Testing add_pthread.c, cont.
Try it 1000 times. ..

S.F. Siegel o CISC 372: Parallel Computing o Threads

Testing add_pthread.c, cont.

Try it 1000 times. ..

basie:add siegel$ for i in {1..1000}; do ./add_pthread.exec 20; done
The sum is 210
The sum is 186
The sum is 210
The sum is 210
The sum is 208

Hmmm...

S.F. Siegel

o CISC 372: Parallel Computing < Threads 5

Testing add_pthread.c, cont.

Better yet, collate the results:

for i in {1..1000}; do ./add_pthread.exec 20; done | sort -n | uniq -c

S.F. Siegel o CISC 372: Parallel Computing < Threads 6

Testing add_pthread.c, cont.

Better yet, collate the results:

for i in {1..1000}; do ./add_pthread.exec 20; done | sort -n | uniq -c
1 The sum is 176 7 The sum is 197
1 The sum is 178 13 The sum is 198
1 The sum is 179 9 The sum is 199
1 The sum is 184 11 The sum is 200
2 The sum is 188 9 The sum is 201
3 The sum is 189 11 The sum is 202
7 The sum is 190 9 The sum is 203
11 The sum is 191 10 The sum is 204
12 The sum is 192 10 The sum is 205
7 The sum is 193 1 The sum is 206
8 The sum is 194 158 The sum is 208
11 The sum is 195 91 The sum is 209
7 The sum is 196 589 The sum is 210

S.F. Siegel

<

CISC 372: Parallel Computing

<

Threads

What went wrong?

» a data race
» x+=y really consists of several machine-level steps:

» read x into a register
P> read y into a register
» compute the sum and store it in x

» if two threads are executing concurrently, this might happen:

1. thread 1: read x
thread 2: read x
thread 1: read y
thread 2: read y
thread 1: compute sum and store it in x
6. thread 2: compute sum and store it in x

N

» the contribution from thread 1 is overwritten!
» worse:

» total garbage could be written to x

» compiler could change code in some unpredlctable way based on assumption there is no race
S.F. Siegel < CISC 372: Parallel Computing < Threads

Data races

A data race occurs whenever
» two threads can access the same memory location concurrently, and

> at |least one of the accesses is a write.

S.F. Siegel < CISC 372: Parallel Computing < Threads 8

Data races

A data race occurs whenever
» two threads can access the same memory location concurrently, and

> at |least one of the accesses is a write.

Two kinds of data races:
» read-write: one thread reads and the other writes, or

» write-write: both threads write

S.F. Siegel < CISC 372: Parallel Computing < Threads 8

Data races

A data race occurs whenever
» two threads can access the same memory location concurrently, and

> at |least one of the accesses is a write.

Two kinds of data races:
» read-write: one thread reads and the other writes, or

» write-write: both threads write

A data race in a Pthreads program results in undefined behavior.

S.F. Siegel < CISC 372: Parallel Computing < Threads 8

Data races

A data race occurs whenever
» two threads can access the same memory location concurrently, and

> at |least one of the accesses is a write.

Two kinds of data races:
» read-write: one thread reads and the other writes, or

» write-write: both threads write

A data race in a Pthreads program results in undefined behavior.

The program could do “anything” (crash, return weird results,. . .)

S.F. Siegel < CISC 372: Parallel Computing < Threads 8

Data races

A data race occurs whenever
» two threads can access the same memory location concurrently, and

> at |least one of the accesses is a write.

Two kinds of data races:
» read-write: one thread reads and the other writes, or

» write-write: both threads write

A data race in a Pthreads program results in undefined behavior.
The program could do “anything” (crash, return weird results,. . .)

You can not assume the value written will be one of the two possible “reasonable” values.

S.F. Siegel CISC 372: Parallel Computing < Threads 8

Data races

A data race occurs whenever
» two threads can access the same memory location concurrently, and

> at |least one of the accesses is a write.

Two kinds of data races:
» read-write: one thread reads and the other writes, or

» write-write: both threads write

A data race in a Pthreads program results in undefined behavior.
The program could do “anything” (crash, return weird results,. . .)

You can not assume the value written will be one of the two possible “reasonable” values.
» it is the programmer’s responsibility to avoid all data races

S.F. Siegel < CISC 372: Parallel Computing < Threads 8

Mutexes

S.F. Siegel < CIsC 372: P

el Computing < Threads

Mutexes

» mutex = “mutual exclusion lock”

S.F. Siegel < CISC 372: Parallel Computing < Threads

Mutexes

» mutex = “mutual exclusion lock”

-

» used to guarantee that at most one thread can access a shared object at any time

S.F. Siegel

CISC 372

Parallel Computing

Threads

Mutexes

» mutex = “mutual exclusion lock”

-

» used to guarantee that at most one thread can access a shared object at any time

» many variations possible; for now, use default settings

Mutexes

vVvyyVvyy

mutex = “mutual exclusion lock”

-

used to guarantee that at most one thread can access a shared object at any time

many variations possible; for now, use default settings

supports “lock” and “unlock” operations

Mutexes

vVvyVvyVvyy

mutex = “mutual exclusion lock”

-

used to guarantee that at most one thread can access a shared object at any time

many variations possible; for now, use default settings
supports “lock” and “unlock” operations

in this example, a single mutex is used to control access to sum

Mutexes

mutex = “mutual exclusion lock”

many variations possible; for now, use default settings
supports “lock” and “unlock” operations
in this example, a single mutex is used to control access to sum

each thread obtains the lock before reading and modifying sum

VVvVyVvYyVvVYvVYyYVvyy

...and releases lock when it is done

S.F. Siegel CISC 372: Parallel Computing Threads 9

-

used to guarantee that at most one thread can access a shared object at any time

Mutexes

-

mutex = “mutual exclusion lock”

used to guarantee that at most one thread can access a shared object at any time
many variations possible; for now, use default settings

supports “lock” and “unlock” operations

in this example, a single mutex is used to control access to sum

each thread obtains the lock before reading and modifying sum

...and releases lock when it is done

VVyVvyVVYVYVYY

a thread will block when trying to obtain the lock if another thread owns the lock

S.F. Siegel CISC 372: Parallel Computing Threads 9

add_pthread_fix.c

int nthreads, sum = O;
pthread_mutex_t mutexsum;
void* hello(void* arg) {
int * tidp = (intx)arg;
pthread_mutex_lock(&mutexsum) ;
sum += (*tidp)+1;
pthread_mutex_unlock(&mutexsum) ;
return NULL;
}
int main (int argc, char xargv[]) {
nthreads = atoi(argv[1]);
pthread_t threads[nthreads];
int tids[nthreads];
pthread_mutex_init (&mutexsum, NULL) ;
for (int i=0; i<nthreads; i++) tids[i] = i;
for (int i=0; i<nthreads; i++) pthread_create(threads + i, NULL, hello, tids + i);
for (int i=0; i<nthreads; i++) pthread_join(threads[i], NULL);
pthread_mutex_destroy(&mutexsum) ;
printf("The sum is %d\n", sum);

}

S.F. Siegel < CISC 372: Parallel Computing < Threads 10

Test add_pthread_fix.c

for i in {1..1000}; do ./add_pthread_fix.exec 20; done | sort -n | uniq -c

S.F. Siegel o CISC 372: Parallel Computing o Threads 11

Test add_pthread_fix.c

for i in {1..1000}; do ./add_pthread_fix.exec 20; done | sort -n | uniq -c

1000 The sum is 210

S.F. Siegel o CISC 372: Parallel Computing o Threads 11

Mutex semantics

S.F. Siegel o

CISC 372: Parallel Computing

<o Threads

12

Mutex semantics

» the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state

S.F. Siegel o CISC 372: Parallel Computing < Threads 12

Mutex semantics

» the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state

» mutex state

» the state is either a reference to one thread or NULL
» the thread that “owns” the locked lock, or the lock is open

S.F. Siegel < CISC 372: Parallel Computing < Threads 12

Mutex semantics

» the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state

» mutex state

» the state is either a reference to one thread or NULL

» the thread that “owns” the locked lock, or the lock is open
» atomic actions

» lock

> if the state is NULL, a thread t may execute this action and the state becomes t
P if the state is non-null, t will block

S.F. Siegel < CISC 372: Parallel Computing < Threads 12

Mutex semantics

» the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state

» mutex state

» the state is either a reference to one thread or NULL

» the thread that “owns” the locked lock, or the lock is open
» atomic actions

» lock

> if the state is NULL, a thread t may execute this action and the state becomes t
P if the state is non-null, t will block

» unlock: if the state is t then t may execute this action and state becomes NULL

S.F. Siegel < CISC 372: Parallel Computing < Threads 12

Mutex semantics

» the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state

» mutex state

» the state is either a reference to one thread or NULL
» the thread that “owns” the locked lock, or the lock is open

» atomic actions
» lock

> if the state is NULL, a thread t may execute this action and the state becomes t
P if the state is non-null, t will block

» unlock: if the state is t then t may execute this action and state becomes NULL
» all other actions: undefined

P a thread that does not own the lock attempts to unlock it
» a thread that owns the lock attempts to lock it

S.F. Siegel < CISC 372: Parallel Computing < Threads 12

Mutex semantics

» the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state

» mutex state

» the state is either a reference to one thread or NULL
» the thread that “owns” the locked lock, or the lock is open

» atomic actions
» lock

> if the state is NULL, a thread t may execute this action and the state becomes t
P if the state is non-null, t will block

» unlock: if the state is t then t may execute this action and state becomes NULL
» all other actions: undefined

P a thread that does not own the lock attempts to unlock it

» a thread that owns the lock attempts to lock it

» this is all for basic mutexes; other variations are more lenient

S.F. Siegel < CISC 372: Parallel Computing < Threads 12

Using mutexes

P> a mutex is typically used to control access to some shared data

S.F. Siegel o CISC 372: Parallel Computing < Threads 13

Using mutexes

P> a mutex is typically used to control access to some shared data
» this is purely a programming convention

» no formal relationship between the mutex and the data
» programmer should document the relationship clearly

S.F. Siegel < CISC 372: Parallel Computing < Threads 13

Using mutexes

P> a mutex is typically used to control access to some shared data
» this is purely a programming convention

» no formal relationship between the mutex and the data

» programmer should document the relationship clearly
» typical control flow:

1. obtain lock;
2. access the shared data;
3. release the lock;

S.F. Siegel < CISC 372: Parallel Computing < Threads 13

Using mutexes

P> a mutex is typically used to control access to some shared data
» this is purely a programming convention

» no formal relationship between the mutex and the data
» programmer should document the relationship clearly

» typical control flow:

1. obtain lock;
2. access the shared data;
3. release the lock;

» do this wherever the data is accessed!
> if you miss one case, all bets are off

S.F. Siegel < CISC 372: Parallel Computing < Threads 13

Pthreads mutex interface

S.F. Siegel o CISC 372: Parallel Computing

<o

Threads

14

Pthreads mutex interface

> type
> pthread_mutex_t : opaque handle to a mutex

S.F. Siegel o CISC 372: Parallel Computing o Threads 14

Pthreads mutex interface

> type
> pthread_mutex_t : opaque handle to a mutex

» functions

int pthread_mutex_init (pthread_mutex_t * mutex,

pthread_mutexattr_t * attr);

int pthread_mutex_destroy (pthread_mutex_t * mutex
int pthread_mutex_lock (pthread_mutex_t * mutex
int pthread_mutex_unlock (pthread_mutex_t * mutex

)
)
).

3

S.F. Siegel < CISC 372: Parallel Computing < Threads 14

Pthreads mutex interface

> type
> pthread_mutex_t : opaque handle to a mutex

» functions

int pthread_mutex_init (pthread_mutex_t * mutex,

pthread_mutexattr_t * attr);

int pthread_mutex_destroy (pthread_mutex_t * mutex
int pthread_mutex_lock (pthread_mutex_t * mutex
int pthread_mutex_unlock (pthread_mutex_t * mutex

)
)
).

3

» use NULL for the attribute argument for now

S.F. Siegel < CISC 372: Parallel Computing < Threads 14

Pthreads mutex interface

> type
> pthread_mutex_t : opaque handle to a mutex

» functions

int pthread_mutex_init (pthread_mutex_t * mutex,

pthread_mutexattr_t * attr);
int pthread_mutex_destroy (pthread_mutex_t * mutex)
int pthread_mutex_lock (pthread_mutex_t * mutex)
int pthread_mutex_unlock (pthread_mutex_t * mutex)

I

3

» use NULL for the attribute argument for now

» all functions return error code (O=success)

S.F. Siegel < CISC 372: Parallel Computing < Threads 14

Mutexes and memory

» different fields of a struct occupy distinct memory locations

S.F. Siegel o CISC 372: Parallel Computing < Threads 15

Mutexes and memory

» different fields of a struct occupy distinct memory locations

» different cells of an array are different memory locations

S.F. Siegel o CISC 372: Parallel Computing < Threads 15

Mutexes and memory

» different fields of a struct occupy distinct memory locations
» different cells of an array are different memory locations

> a mutex is not required if each thread is accessing its own section of the array/struct

S.F. Siegel < CISC 372: Parallel Computing < Threads 15

Mutexes and memory

» different fields of a struct occupy distinct memory locations
» different cells of an array are different memory locations

> a mutex is not required if each thread is accessing its own section of the array/struct
» however performance problems are possible

» the cache system may have to constantly reload the line containing your cell
» if another thread is accessing a nearby cell in the same line

S.F. Siegel CISC 372: Parallel Computing < Threads 15

The Critical Section Problem

S.F. Siegel o CISC 372: Parallel Computing <o Threads

16

The Critical Section Problem

» another common concurrent program pattern:

while (true) {
enter critical section
CRITICAL SECTION: only one thread at a time
exit critical section
NON-CRITICAL SECTION: any number of threads can execute

S.F. Siegel o CISC 372: Parallel Computing < Threads 16

The Critical Section Problem

» another common concurrent program pattern:

while (true) {
enter critical section
CRITICAL SECTION: only one thread at a time
exit critical section
NON-CRITICAL SECTION: any number of threads can execute

}

> the problem: design entrance/exit protocols (and appropriate state) such that

S.F. Siegel < CISC 372: Parallel Computing < Threads 16

The Critical Section Problem

» another common concurrent program pattern:

while (true) {
enter critical section
CRITICAL SECTION: only one thread at a time
exit critical section
NON-CRITICAL SECTION: any number of threads can execute

}

> the problem: design entrance/exit protocols (and appropriate state) such that
1. deadlock-free

S.F. Siegel < CISC 372: Parallel Computing < Threads 16

The Critical Section Problem

» another common concurrent program pattern:

while (true) {
enter critical section
CRITICAL SECTION: only one thread at a time
exit critical section
NON-CRITICAL SECTION: any number of threads can execute

}

> the problem: design entrance/exit protocols (and appropriate state) such that
1. deadlock-free
2. no unnecessary delay
> a thread that is trying to enter the critical section when no one else is in the critical section will
enter without delay

S.F. Siegel < CISC 372: Parallel Computing < Threads 16

The Critical Section Problem

» another common concurrent program pattern:

while (true) {
enter critical section
CRITICAL SECTION: only one thread at a time
exit critical section
NON-CRITICAL SECTION: any number of threads can execute

}
> the problem: design entrance/exit protocols (and appropriate state) such that

1. deadlock-free
2. no unnecessary delay
> a thread that is trying to enter the critical section when no one else is in the critical section will
enter without delay

3. mutual exclusion: at most one thread in critical section at any time

S.F. Siegel < CISC 372: Parallel Computing < Threads 16

The Critical Section Problem

» another common concurrent program pattern:

while (true) {
enter critical section
CRITICAL SECTION: only one thread at a time
exit critical section
NON-CRITICAL SECTION: any number of threads can execute

}
> the problem: design entrance/exit protocols (and appropriate state) such that
1. deadlock-free
2. no unnecessary delay
> a thread that is trying to enter the critical section when no one else is in the critical section will
enter without delay
3. mutual exclusion: at most one thread in critical section at any time
4. fairness (or, no starvation)
» if a thread is trying to enter the critical section then eventually it will succeed (after some finite
delay)

S.F. Siegel < CISC 372: Parallel Computing < Threads 16

Critical section: desired properties

1. deadlock-free
2. no unnecessary delay

» a thread that is trying to enter the critical section when no one else is in the critical section
will enter without delay

3. mutual exclusion: at most one thread in critical section at any time
4. fairness (or, no starvation)

> if a thread is trying to enter the critical section then eventually it will succeed (after some
finite delay)

Solution #1: use a mutex
> see crit_sec_mutex.c

» which properties hold?

S.F. Siegel < CISC 372: Parallel Computing < Threads 17

Critical section: desired properties

1. deadlock-free

2. no unnecessary delay

» a thread that is trying to enter the critical section when no one else is in the critical section
will enter without delay

3. mutual exclusion: at most one thread in critical section at any time
4. fairness (or, no starvation)

> if a thread is trying to enter the critical section then eventually it will succeed (after some
finite delay)

Solution #1: use a mutex
> see crit_sec_mutex.c
» which properties hold?
> 1-3: yes
» What about 47

S.F. Siegel < CISC 372: Parallel Computing < Threads 17

Critical section: desired properties

1. deadlock-free

2. no unnecessary delay

» a thread that is trying to enter the critical section when no one else is in the critical section
will enter without delay

3. mutual exclusion: at most one thread in critical section at any time
4. fairness (or, no starvation)

> if a thread is trying to enter the critical section then eventually it will succeed (after some
finite delay)

Solution #1: use a mutex
> see crit_sec_mutex.c
» which properties hold?
> 1-3: yes
» What about 47 Not necessarily. This is a hard problem.

S.F. Siegel < CISC 372: Parallel Computing < Threads 17

Critical section: desired properties

1. deadlock-free

2. no unnecessary delay

» a thread that is trying to enter the critical section when no one else is in the critical section
will enter without delay

3. mutual exclusion: at most one thread in critical section at any time
4. fairness (or, no starvation)

> if a thread is trying to enter the critical section then eventually it will succeed (after some
finite delay)

Solution #1: use a mutex
> see crit_sec_mutex.c
» which properties hold?
> 1-3: yes
» What about 47 Not necessarily. This is a hard problem.

» famous solutions: Lamport's bakery algorithm, Peterson’s mutual exclusion algorithm

S.F. Siegel < CISC 372: Parallel Computing < Threads 17

