
CISC 372: Parallel Computing
Threads, part 2: data races, mutexes, and critical sections

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

Next example: add_pthread.c

I should sum integers from 1 to n
I where n is the number of threads created
I n is the command line arg

I result should be n(n + 1)/2

S.F. Siegel � CISC 372: Parallel Computing � Threads 2

add_pthread.c

int nthreads; // number of threads to create

int sum = 0;

void* hello(void* arg) {

int * tidp = (int*)arg;

sum += (*tidp)+1;

return NULL;

}

int main(int argc, char *argv[]) {

nthreads = atoi(argv[1]);

pthread_t threads[nthreads];

int tids[nthreads];

for (int i=0; i<nthreads; i++) tids[i] = i;

for (int i=0; i<nthreads; i++)

pthread_create(threads + i, NULL, hello, tids + i);

for (int i=0; i<nthreads; i++)

pthread_join(threads[i], NULL);

printf("The sum is %d\n", sum);

}

S.F. Siegel � CISC 372: Parallel Computing � Threads 3

Testing add_pthread.c

basie:add siegel$./add_pthread.exec 20

The sum is 210

basie:add siegel$./add_pthread.exec 20

The sum is 210

basie:add siegel$./add_pthread.exec 20

The sum is 210

basie:add siegel$./add_pthread.exec 20

The sum is 210

The program must be correct, right?

S.F. Siegel � CISC 372: Parallel Computing � Threads 4

Testing add_pthread.c, cont.

Try it 1000 times. . .

basie:add siegel$ for i in {1..1000}; do ./add_pthread.exec 20; done

The sum is 210

The sum is 186

The sum is 210

The sum is 210

The sum is 208

...

Hmmm...

S.F. Siegel � CISC 372: Parallel Computing � Threads 5

Testing add_pthread.c, cont.

Try it 1000 times. . .

basie:add siegel$ for i in {1..1000}; do ./add_pthread.exec 20; done

The sum is 210

The sum is 186

The sum is 210

The sum is 210

The sum is 208

...

Hmmm...

S.F. Siegel � CISC 372: Parallel Computing � Threads 5

Testing add_pthread.c, cont.

Better yet, collate the results:

for i in {1..1000}; do ./add_pthread.exec 20; done | sort -n | uniq -c

1 The sum is 176

1 The sum is 178

1 The sum is 179

1 The sum is 184

2 The sum is 188

3 The sum is 189

7 The sum is 190

11 The sum is 191

12 The sum is 192

7 The sum is 193

8 The sum is 194

11 The sum is 195

7 The sum is 196

7 The sum is 197

13 The sum is 198

9 The sum is 199

11 The sum is 200

9 The sum is 201

11 The sum is 202

9 The sum is 203

10 The sum is 204

10 The sum is 205

1 The sum is 206

158 The sum is 208

91 The sum is 209

589 The sum is 210

S.F. Siegel � CISC 372: Parallel Computing � Threads 6

Testing add_pthread.c, cont.

Better yet, collate the results:

for i in {1..1000}; do ./add_pthread.exec 20; done | sort -n | uniq -c

1 The sum is 176

1 The sum is 178

1 The sum is 179

1 The sum is 184

2 The sum is 188

3 The sum is 189

7 The sum is 190

11 The sum is 191

12 The sum is 192

7 The sum is 193

8 The sum is 194

11 The sum is 195

7 The sum is 196

7 The sum is 197

13 The sum is 198

9 The sum is 199

11 The sum is 200

9 The sum is 201

11 The sum is 202

9 The sum is 203

10 The sum is 204

10 The sum is 205

1 The sum is 206

158 The sum is 208

91 The sum is 209

589 The sum is 210

S.F. Siegel � CISC 372: Parallel Computing � Threads 6

What went wrong?

I a data race
I x+=y really consists of several machine-level steps:

I read x into a register
I read y into a register
I compute the sum and store it in x

I if two threads are executing concurrently, this might happen:

1. thread 1: read x

2. thread 2: read x

3. thread 1: read y

4. thread 2: read y

5. thread 1: compute sum and store it in x

6. thread 2: compute sum and store it in x

I the contribution from thread 1 is overwritten!
I worse:

I total garbage could be written to x
I compiler could change code in some unpredictable way based on assumption there is no race

S.F. Siegel � CISC 372: Parallel Computing � Threads 7

Data races

A data race occurs whenever

I two threads can access the same memory location concurrently, and

I at least one of the accesses is a write.

Two kinds of data races:

I read-write: one thread reads and the other writes, or

I write-write: both threads write

A data race in a Pthreads program results in undefined behavior.

The program could do “anything” (crash, return weird results,. . .)

You can not assume the value written will be one of the two possible “reasonable” values.

I it is the programmer’s responsibility to avoid all data races

S.F. Siegel � CISC 372: Parallel Computing � Threads 8

Data races

A data race occurs whenever

I two threads can access the same memory location concurrently, and

I at least one of the accesses is a write.

Two kinds of data races:

I read-write: one thread reads and the other writes, or

I write-write: both threads write

A data race in a Pthreads program results in undefined behavior.

The program could do “anything” (crash, return weird results,. . .)

You can not assume the value written will be one of the two possible “reasonable” values.

I it is the programmer’s responsibility to avoid all data races

S.F. Siegel � CISC 372: Parallel Computing � Threads 8

Data races

A data race occurs whenever

I two threads can access the same memory location concurrently, and

I at least one of the accesses is a write.

Two kinds of data races:

I read-write: one thread reads and the other writes, or

I write-write: both threads write

A data race in a Pthreads program results in undefined behavior.

The program could do “anything” (crash, return weird results,. . .)

You can not assume the value written will be one of the two possible “reasonable” values.

I it is the programmer’s responsibility to avoid all data races

S.F. Siegel � CISC 372: Parallel Computing � Threads 8

Data races

A data race occurs whenever

I two threads can access the same memory location concurrently, and

I at least one of the accesses is a write.

Two kinds of data races:

I read-write: one thread reads and the other writes, or

I write-write: both threads write

A data race in a Pthreads program results in undefined behavior.

The program could do “anything” (crash, return weird results,. . .)

You can not assume the value written will be one of the two possible “reasonable” values.

I it is the programmer’s responsibility to avoid all data races

S.F. Siegel � CISC 372: Parallel Computing � Threads 8

Data races

A data race occurs whenever

I two threads can access the same memory location concurrently, and

I at least one of the accesses is a write.

Two kinds of data races:

I read-write: one thread reads and the other writes, or

I write-write: both threads write

A data race in a Pthreads program results in undefined behavior.

The program could do “anything” (crash, return weird results,. . .)

You can not assume the value written will be one of the two possible “reasonable” values.

I it is the programmer’s responsibility to avoid all data races

S.F. Siegel � CISC 372: Parallel Computing � Threads 8

Data races

A data race occurs whenever

I two threads can access the same memory location concurrently, and

I at least one of the accesses is a write.

Two kinds of data races:

I read-write: one thread reads and the other writes, or

I write-write: both threads write

A data race in a Pthreads program results in undefined behavior.

The program could do “anything” (crash, return weird results,. . .)

You can not assume the value written will be one of the two possible “reasonable” values.

I it is the programmer’s responsibility to avoid all data races

S.F. Siegel � CISC 372: Parallel Computing � Threads 8

Mutexes

I mutex = “mutual exclusion lock”

I used to guarantee that at most one thread can access a shared object at any time

I many variations possible; for now, use default settings

I supports “lock” and “unlock” operations

I in this example, a single mutex is used to control access to sum

I each thread obtains the lock before reading and modifying sum

I . . . and releases lock when it is done

I a thread will block when trying to obtain the lock if another thread owns the lock

S.F. Siegel � CISC 372: Parallel Computing � Threads 9

Mutexes

I mutex = “mutual exclusion lock”

I used to guarantee that at most one thread can access a shared object at any time

I many variations possible; for now, use default settings

I supports “lock” and “unlock” operations

I in this example, a single mutex is used to control access to sum

I each thread obtains the lock before reading and modifying sum

I . . . and releases lock when it is done

I a thread will block when trying to obtain the lock if another thread owns the lock

S.F. Siegel � CISC 372: Parallel Computing � Threads 9

Mutexes

I mutex = “mutual exclusion lock”

I used to guarantee that at most one thread can access a shared object at any time

I many variations possible; for now, use default settings

I supports “lock” and “unlock” operations

I in this example, a single mutex is used to control access to sum

I each thread obtains the lock before reading and modifying sum

I . . . and releases lock when it is done

I a thread will block when trying to obtain the lock if another thread owns the lock

S.F. Siegel � CISC 372: Parallel Computing � Threads 9

Mutexes

I mutex = “mutual exclusion lock”

I used to guarantee that at most one thread can access a shared object at any time

I many variations possible; for now, use default settings

I supports “lock” and “unlock” operations

I in this example, a single mutex is used to control access to sum

I each thread obtains the lock before reading and modifying sum

I . . . and releases lock when it is done

I a thread will block when trying to obtain the lock if another thread owns the lock

S.F. Siegel � CISC 372: Parallel Computing � Threads 9

Mutexes

I mutex = “mutual exclusion lock”

I used to guarantee that at most one thread can access a shared object at any time

I many variations possible; for now, use default settings

I supports “lock” and “unlock” operations

I in this example, a single mutex is used to control access to sum

I each thread obtains the lock before reading and modifying sum

I . . . and releases lock when it is done

I a thread will block when trying to obtain the lock if another thread owns the lock

S.F. Siegel � CISC 372: Parallel Computing � Threads 9

Mutexes

I mutex = “mutual exclusion lock”

I used to guarantee that at most one thread can access a shared object at any time

I many variations possible; for now, use default settings

I supports “lock” and “unlock” operations

I in this example, a single mutex is used to control access to sum

I each thread obtains the lock before reading and modifying sum

I . . . and releases lock when it is done

I a thread will block when trying to obtain the lock if another thread owns the lock

S.F. Siegel � CISC 372: Parallel Computing � Threads 9

Mutexes

I mutex = “mutual exclusion lock”

I used to guarantee that at most one thread can access a shared object at any time

I many variations possible; for now, use default settings

I supports “lock” and “unlock” operations

I in this example, a single mutex is used to control access to sum

I each thread obtains the lock before reading and modifying sum

I . . . and releases lock when it is done

I a thread will block when trying to obtain the lock if another thread owns the lock

S.F. Siegel � CISC 372: Parallel Computing � Threads 9

Mutexes

I mutex = “mutual exclusion lock”

I used to guarantee that at most one thread can access a shared object at any time

I many variations possible; for now, use default settings

I supports “lock” and “unlock” operations

I in this example, a single mutex is used to control access to sum

I each thread obtains the lock before reading and modifying sum

I . . . and releases lock when it is done

I a thread will block when trying to obtain the lock if another thread owns the lock

S.F. Siegel � CISC 372: Parallel Computing � Threads 9

add_pthread_fix.c
int nthreads, sum = 0;

pthread_mutex_t mutexsum;

void* hello(void* arg) {

int * tidp = (int*)arg;

pthread_mutex_lock(&mutexsum);

sum += (*tidp)+1;

pthread_mutex_unlock(&mutexsum);

return NULL;

}

int main (int argc, char *argv[]) {

nthreads = atoi(argv[1]);

pthread_t threads[nthreads];

int tids[nthreads];

pthread_mutex_init(&mutexsum, NULL);

for (int i=0; i<nthreads; i++) tids[i] = i;

for (int i=0; i<nthreads; i++) pthread_create(threads + i, NULL, hello, tids + i);

for (int i=0; i<nthreads; i++) pthread_join(threads[i], NULL);

pthread_mutex_destroy(&mutexsum);

printf("The sum is %d\n", sum);

}
S.F. Siegel � CISC 372: Parallel Computing � Threads 10

Test add_pthread_fix.c

for i in {1..1000}; do ./add_pthread_fix.exec 20; done | sort -n | uniq -c

1000 The sum is 210

S.F. Siegel � CISC 372: Parallel Computing � Threads 11

Test add_pthread_fix.c

for i in {1..1000}; do ./add_pthread_fix.exec 20; done | sort -n | uniq -c

1000 The sum is 210

S.F. Siegel � CISC 372: Parallel Computing � Threads 11

Mutex semantics

I the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state

I mutex state
I the state is either a reference to one thread or NULL
I the thread that “owns” the locked lock, or the lock is open

I atomic actions
I lock

I if the state is NULL, a thread t may execute this action and the state becomes t
I if the state is non-null, t will block

I unlock: if the state is t then t may execute this action and state becomes NULL

I all other actions: undefined
I a thread that does not own the lock attempts to unlock it
I a thread that owns the lock attempts to lock it

I this is all for basic mutexes; other variations are more lenient

S.F. Siegel � CISC 372: Parallel Computing � Threads 12

Mutex semantics

I the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state

I mutex state
I the state is either a reference to one thread or NULL
I the thread that “owns” the locked lock, or the lock is open

I atomic actions
I lock

I if the state is NULL, a thread t may execute this action and the state becomes t
I if the state is non-null, t will block

I unlock: if the state is t then t may execute this action and state becomes NULL

I all other actions: undefined
I a thread that does not own the lock attempts to unlock it
I a thread that owns the lock attempts to lock it

I this is all for basic mutexes; other variations are more lenient

S.F. Siegel � CISC 372: Parallel Computing � Threads 12

Mutex semantics

I the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state

I mutex state
I the state is either a reference to one thread or NULL
I the thread that “owns” the locked lock, or the lock is open

I atomic actions
I lock

I if the state is NULL, a thread t may execute this action and the state becomes t
I if the state is non-null, t will block

I unlock: if the state is t then t may execute this action and state becomes NULL

I all other actions: undefined
I a thread that does not own the lock attempts to unlock it
I a thread that owns the lock attempts to lock it

I this is all for basic mutexes; other variations are more lenient

S.F. Siegel � CISC 372: Parallel Computing � Threads 12

Mutex semantics

I the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state

I mutex state
I the state is either a reference to one thread or NULL
I the thread that “owns” the locked lock, or the lock is open

I atomic actions
I lock

I if the state is NULL, a thread t may execute this action and the state becomes t
I if the state is non-null, t will block

I unlock: if the state is t then t may execute this action and state becomes NULL

I all other actions: undefined
I a thread that does not own the lock attempts to unlock it
I a thread that owns the lock attempts to lock it

I this is all for basic mutexes; other variations are more lenient

S.F. Siegel � CISC 372: Parallel Computing � Threads 12

Mutex semantics

I the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state

I mutex state
I the state is either a reference to one thread or NULL
I the thread that “owns” the locked lock, or the lock is open

I atomic actions
I lock

I if the state is NULL, a thread t may execute this action and the state becomes t
I if the state is non-null, t will block

I unlock: if the state is t then t may execute this action and state becomes NULL

I all other actions: undefined
I a thread that does not own the lock attempts to unlock it
I a thread that owns the lock attempts to lock it

I this is all for basic mutexes; other variations are more lenient

S.F. Siegel � CISC 372: Parallel Computing � Threads 12

Mutex semantics

I the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state

I mutex state
I the state is either a reference to one thread or NULL
I the thread that “owns” the locked lock, or the lock is open

I atomic actions
I lock

I if the state is NULL, a thread t may execute this action and the state becomes t
I if the state is non-null, t will block

I unlock: if the state is t then t may execute this action and state becomes NULL

I all other actions: undefined
I a thread that does not own the lock attempts to unlock it
I a thread that owns the lock attempts to lock it

I this is all for basic mutexes; other variations are more lenient

S.F. Siegel � CISC 372: Parallel Computing � Threads 12

Mutex semantics

I the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state

I mutex state
I the state is either a reference to one thread or NULL
I the thread that “owns” the locked lock, or the lock is open

I atomic actions
I lock

I if the state is NULL, a thread t may execute this action and the state becomes t
I if the state is non-null, t will block

I unlock: if the state is t then t may execute this action and state becomes NULL

I all other actions: undefined
I a thread that does not own the lock attempts to unlock it
I a thread that owns the lock attempts to lock it

I this is all for basic mutexes; other variations are more lenient

S.F. Siegel � CISC 372: Parallel Computing � Threads 12

Using mutexes

I a mutex is typically used to control access to some shared data

I this is purely a programming convention
I no formal relationship between the mutex and the data
I programmer should document the relationship clearly

I typical control flow:

1. obtain lock;
2. access the shared data;
3. release the lock;

I do this wherever the data is accessed!
I if you miss one case, all bets are off

S.F. Siegel � CISC 372: Parallel Computing � Threads 13

Using mutexes

I a mutex is typically used to control access to some shared data
I this is purely a programming convention

I no formal relationship between the mutex and the data
I programmer should document the relationship clearly

I typical control flow:

1. obtain lock;
2. access the shared data;
3. release the lock;

I do this wherever the data is accessed!
I if you miss one case, all bets are off

S.F. Siegel � CISC 372: Parallel Computing � Threads 13

Using mutexes

I a mutex is typically used to control access to some shared data
I this is purely a programming convention

I no formal relationship between the mutex and the data
I programmer should document the relationship clearly

I typical control flow:

1. obtain lock;
2. access the shared data;
3. release the lock;

I do this wherever the data is accessed!
I if you miss one case, all bets are off

S.F. Siegel � CISC 372: Parallel Computing � Threads 13

Using mutexes

I a mutex is typically used to control access to some shared data
I this is purely a programming convention

I no formal relationship between the mutex and the data
I programmer should document the relationship clearly

I typical control flow:

1. obtain lock;
2. access the shared data;
3. release the lock;

I do this wherever the data is accessed!
I if you miss one case, all bets are off

S.F. Siegel � CISC 372: Parallel Computing � Threads 13

Pthreads mutex interface

I type
I pthread_mutex_t : opaque handle to a mutex

I functions

int pthread_mutex_init (pthread_mutex_t * mutex,

pthread_mutexattr_t * attr);

int pthread_mutex_destroy (pthread_mutex_t * mutex);

int pthread_mutex_lock (pthread_mutex_t * mutex);

int pthread_mutex_unlock (pthread_mutex_t * mutex);

I use NULL for the attribute argument for now

I all functions return error code (0=success)

S.F. Siegel � CISC 372: Parallel Computing � Threads 14

Pthreads mutex interface

I type
I pthread_mutex_t : opaque handle to a mutex

I functions

int pthread_mutex_init (pthread_mutex_t * mutex,

pthread_mutexattr_t * attr);

int pthread_mutex_destroy (pthread_mutex_t * mutex);

int pthread_mutex_lock (pthread_mutex_t * mutex);

int pthread_mutex_unlock (pthread_mutex_t * mutex);

I use NULL for the attribute argument for now

I all functions return error code (0=success)

S.F. Siegel � CISC 372: Parallel Computing � Threads 14

Pthreads mutex interface

I type
I pthread_mutex_t : opaque handle to a mutex

I functions

int pthread_mutex_init (pthread_mutex_t * mutex,

pthread_mutexattr_t * attr);

int pthread_mutex_destroy (pthread_mutex_t * mutex);

int pthread_mutex_lock (pthread_mutex_t * mutex);

int pthread_mutex_unlock (pthread_mutex_t * mutex);

I use NULL for the attribute argument for now

I all functions return error code (0=success)

S.F. Siegel � CISC 372: Parallel Computing � Threads 14

Pthreads mutex interface

I type
I pthread_mutex_t : opaque handle to a mutex

I functions

int pthread_mutex_init (pthread_mutex_t * mutex,

pthread_mutexattr_t * attr);

int pthread_mutex_destroy (pthread_mutex_t * mutex);

int pthread_mutex_lock (pthread_mutex_t * mutex);

int pthread_mutex_unlock (pthread_mutex_t * mutex);

I use NULL for the attribute argument for now

I all functions return error code (0=success)

S.F. Siegel � CISC 372: Parallel Computing � Threads 14

Pthreads mutex interface

I type
I pthread_mutex_t : opaque handle to a mutex

I functions

int pthread_mutex_init (pthread_mutex_t * mutex,

pthread_mutexattr_t * attr);

int pthread_mutex_destroy (pthread_mutex_t * mutex);

int pthread_mutex_lock (pthread_mutex_t * mutex);

int pthread_mutex_unlock (pthread_mutex_t * mutex);

I use NULL for the attribute argument for now

I all functions return error code (0=success)

S.F. Siegel � CISC 372: Parallel Computing � Threads 14

Mutexes and memory

I different fields of a struct occupy distinct memory locations

I different cells of an array are different memory locations

I a mutex is not required if each thread is accessing its own section of the array/struct
I however performance problems are possible

I the cache system may have to constantly reload the line containing your cell
I if another thread is accessing a nearby cell in the same line

S.F. Siegel � CISC 372: Parallel Computing � Threads 15

Mutexes and memory

I different fields of a struct occupy distinct memory locations

I different cells of an array are different memory locations

I a mutex is not required if each thread is accessing its own section of the array/struct
I however performance problems are possible

I the cache system may have to constantly reload the line containing your cell
I if another thread is accessing a nearby cell in the same line

S.F. Siegel � CISC 372: Parallel Computing � Threads 15

Mutexes and memory

I different fields of a struct occupy distinct memory locations

I different cells of an array are different memory locations

I a mutex is not required if each thread is accessing its own section of the array/struct

I however performance problems are possible
I the cache system may have to constantly reload the line containing your cell
I if another thread is accessing a nearby cell in the same line

S.F. Siegel � CISC 372: Parallel Computing � Threads 15

Mutexes and memory

I different fields of a struct occupy distinct memory locations

I different cells of an array are different memory locations

I a mutex is not required if each thread is accessing its own section of the array/struct
I however performance problems are possible

I the cache system may have to constantly reload the line containing your cell
I if another thread is accessing a nearby cell in the same line

S.F. Siegel � CISC 372: Parallel Computing � Threads 15

The Critical Section Problem

I another common concurrent program pattern:

while (true) {

enter critical section

CRITICAL SECTION: only one thread at a time

exit critical section

NON-CRITICAL SECTION: any number of threads can execute

}

I the problem: design entrance/exit protocols (and appropriate state) such that

1. deadlock-free
2. no unnecessary delay

I a thread that is trying to enter the critical section when no one else is in the critical section will
enter without delay

3. mutual exclusion: at most one thread in critical section at any time
4. fairness (or, no starvation)

I if a thread is trying to enter the critical section then eventually it will succeed (after some finite
delay)

S.F. Siegel � CISC 372: Parallel Computing � Threads 16

The Critical Section Problem

I another common concurrent program pattern:

while (true) {

enter critical section

CRITICAL SECTION: only one thread at a time

exit critical section

NON-CRITICAL SECTION: any number of threads can execute

}

I the problem: design entrance/exit protocols (and appropriate state) such that

1. deadlock-free
2. no unnecessary delay

I a thread that is trying to enter the critical section when no one else is in the critical section will
enter without delay

3. mutual exclusion: at most one thread in critical section at any time
4. fairness (or, no starvation)

I if a thread is trying to enter the critical section then eventually it will succeed (after some finite
delay)

S.F. Siegel � CISC 372: Parallel Computing � Threads 16

The Critical Section Problem

I another common concurrent program pattern:

while (true) {

enter critical section

CRITICAL SECTION: only one thread at a time

exit critical section

NON-CRITICAL SECTION: any number of threads can execute

}

I the problem: design entrance/exit protocols (and appropriate state) such that

1. deadlock-free
2. no unnecessary delay

I a thread that is trying to enter the critical section when no one else is in the critical section will
enter without delay

3. mutual exclusion: at most one thread in critical section at any time
4. fairness (or, no starvation)

I if a thread is trying to enter the critical section then eventually it will succeed (after some finite
delay)

S.F. Siegel � CISC 372: Parallel Computing � Threads 16

The Critical Section Problem

I another common concurrent program pattern:

while (true) {

enter critical section

CRITICAL SECTION: only one thread at a time

exit critical section

NON-CRITICAL SECTION: any number of threads can execute

}

I the problem: design entrance/exit protocols (and appropriate state) such that

1. deadlock-free

2. no unnecessary delay
I a thread that is trying to enter the critical section when no one else is in the critical section will

enter without delay

3. mutual exclusion: at most one thread in critical section at any time
4. fairness (or, no starvation)

I if a thread is trying to enter the critical section then eventually it will succeed (after some finite
delay)

S.F. Siegel � CISC 372: Parallel Computing � Threads 16

The Critical Section Problem

I another common concurrent program pattern:

while (true) {

enter critical section

CRITICAL SECTION: only one thread at a time

exit critical section

NON-CRITICAL SECTION: any number of threads can execute

}

I the problem: design entrance/exit protocols (and appropriate state) such that

1. deadlock-free
2. no unnecessary delay

I a thread that is trying to enter the critical section when no one else is in the critical section will
enter without delay

3. mutual exclusion: at most one thread in critical section at any time
4. fairness (or, no starvation)

I if a thread is trying to enter the critical section then eventually it will succeed (after some finite
delay)

S.F. Siegel � CISC 372: Parallel Computing � Threads 16

The Critical Section Problem

I another common concurrent program pattern:

while (true) {

enter critical section

CRITICAL SECTION: only one thread at a time

exit critical section

NON-CRITICAL SECTION: any number of threads can execute

}

I the problem: design entrance/exit protocols (and appropriate state) such that

1. deadlock-free
2. no unnecessary delay

I a thread that is trying to enter the critical section when no one else is in the critical section will
enter without delay

3. mutual exclusion: at most one thread in critical section at any time

4. fairness (or, no starvation)
I if a thread is trying to enter the critical section then eventually it will succeed (after some finite

delay)

S.F. Siegel � CISC 372: Parallel Computing � Threads 16

The Critical Section Problem

I another common concurrent program pattern:

while (true) {

enter critical section

CRITICAL SECTION: only one thread at a time

exit critical section

NON-CRITICAL SECTION: any number of threads can execute

}

I the problem: design entrance/exit protocols (and appropriate state) such that

1. deadlock-free
2. no unnecessary delay

I a thread that is trying to enter the critical section when no one else is in the critical section will
enter without delay

3. mutual exclusion: at most one thread in critical section at any time
4. fairness (or, no starvation)

I if a thread is trying to enter the critical section then eventually it will succeed (after some finite
delay)

S.F. Siegel � CISC 372: Parallel Computing � Threads 16

Critical section: desired properties

1. deadlock-free

2. no unnecessary delay
I a thread that is trying to enter the critical section when no one else is in the critical section

will enter without delay

3. mutual exclusion: at most one thread in critical section at any time

4. fairness (or, no starvation)
I if a thread is trying to enter the critical section then eventually it will succeed (after some

finite delay)

Solution #1: use a mutex

I see crit_sec_mutex.c

I which properties hold?

I 1–3 : yes
I What about 4? Not necessarily. This is a hard problem.

I famous solutions: Lamport’s bakery algorithm, Peterson’s mutual exclusion algorithm

S.F. Siegel � CISC 372: Parallel Computing � Threads 17

Critical section: desired properties

1. deadlock-free

2. no unnecessary delay
I a thread that is trying to enter the critical section when no one else is in the critical section

will enter without delay

3. mutual exclusion: at most one thread in critical section at any time

4. fairness (or, no starvation)
I if a thread is trying to enter the critical section then eventually it will succeed (after some

finite delay)

Solution #1: use a mutex

I see crit_sec_mutex.c

I which properties hold?

I 1–3 : yes
I What about 4?

Not necessarily. This is a hard problem.
I famous solutions: Lamport’s bakery algorithm, Peterson’s mutual exclusion algorithm

S.F. Siegel � CISC 372: Parallel Computing � Threads 17

Critical section: desired properties

1. deadlock-free

2. no unnecessary delay
I a thread that is trying to enter the critical section when no one else is in the critical section

will enter without delay

3. mutual exclusion: at most one thread in critical section at any time

4. fairness (or, no starvation)
I if a thread is trying to enter the critical section then eventually it will succeed (after some

finite delay)

Solution #1: use a mutex

I see crit_sec_mutex.c

I which properties hold?

I 1–3 : yes
I What about 4? Not necessarily. This is a hard problem.

I famous solutions: Lamport’s bakery algorithm, Peterson’s mutual exclusion algorithm

S.F. Siegel � CISC 372: Parallel Computing � Threads 17

Critical section: desired properties

1. deadlock-free

2. no unnecessary delay
I a thread that is trying to enter the critical section when no one else is in the critical section

will enter without delay

3. mutual exclusion: at most one thread in critical section at any time

4. fairness (or, no starvation)
I if a thread is trying to enter the critical section then eventually it will succeed (after some

finite delay)

Solution #1: use a mutex

I see crit_sec_mutex.c

I which properties hold?

I 1–3 : yes
I What about 4? Not necessarily. This is a hard problem.

I famous solutions: Lamport’s bakery algorithm, Peterson’s mutual exclusion algorithm

S.F. Siegel � CISC 372: Parallel Computing � Threads 17

