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Next example: add_pthread.c

» should sum integers from 1 to n

» where n is the number of threads created
» nis the command line arg

» result should be n(n+1)/2
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add_pthread.c

S.F. Siegel

int nthreads; // number of threads to create
int sum = 0;
void* hello(void* arg) {
int * tidp = (int*)arg;
sum += (xtidp)+1;
return NULL;
}
int main(int argc, char *argv[]) {
nthreads = atoi(argv[1]);
pthread_t threads[nthreads];
int tids[nthreads];
for (int i=0; i<nthreads; i++) tids[i] = i;
for (int i=0; i<nthreads; i++)
pthread_create(threads + i, NULL, hello, tids + i);
for (int i=0; i<nthreads; i++)
pthread_join(threads[i], NULL);
printf("The sum is %d\n", sum);

}
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Testing add_pthread.c

basie:add siegel$ .
The sum is 210
basie:add siegel$ .
The sum is 210
basie:add siegel$ .
The sum is 210
basie:add siegel$ .
The sum is 210

/add_pthread.
/add_pthread.
/add_pthread.

/add_pthread.

exec

exec

exec

exec

20

20

20

20

The program must be correct, right?
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Testing add_pthread.c, cont.
Try it 1000 times. ..
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Testing add_pthread.c, cont.

Try it 1000 times. ..

basie:add siegel$ for i in {1..1000}; do ./add_pthread.exec 20; done
The sum is 210
The sum is 186
The sum is 210
The sum is 210
The sum is 208

Hmmm...
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Testing add_pthread.c, cont.

Better yet, collate the results:

for i in {1..1000}; do ./add_pthread.exec 20; done | sort -n | uniq -c
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Testing add_pthread.c, cont.

Better yet, collate the results:

for i in {1..1000}; do ./add_pthread.exec 20; done | sort -n | uniq -c
1 The sum is 176 7 The sum is 197
1 The sum is 178 13 The sum is 198
1 The sum is 179 9 The sum is 199
1 The sum is 184 11 The sum is 200
2 The sum is 188 9 The sum is 201
3 The sum is 189 11 The sum is 202
7 The sum is 190 9 The sum is 203
11 The sum is 191 10 The sum is 204
12 The sum is 192 10 The sum is 205
7 The sum is 193 1 The sum is 206
8 The sum is 194 158 The sum is 208
11 The sum is 195 91 The sum is 209
7 The sum is 196 589 The sum is 210
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What went wrong?

» a data race
» x+=y really consists of several machine-level steps:

» read x into a register
P> read y into a register
» compute the sum and store it in x

» if two threads are executing concurrently, this might happen:

1. thread 1: read x
thread 2: read x
thread 1: read y
thread 2: read y
thread 1: compute sum and store it in x
6. thread 2: compute sum and store it in x

N

» the contribution from thread 1 is overwritten!
» worse:

» total garbage could be written to x

» compiler could change code in some unpredlctable way based on assumption there is no race
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Data races

A data race occurs whenever
» two threads can access the same memory location concurrently, and

> at |least one of the accesses is a write.
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Data races

A data race occurs whenever
» two threads can access the same memory location concurrently, and

> at |least one of the accesses is a write.

Two kinds of data races:
» read-write: one thread reads and the other writes, or

» write-write: both threads write
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Data races

A data race occurs whenever
» two threads can access the same memory location concurrently, and

> at |least one of the accesses is a write.

Two kinds of data races:
» read-write: one thread reads and the other writes, or

» write-write: both threads write

A data race in a Pthreads program results in undefined behavior.
The program could do “anything” (crash, return weird results,. . .)

You can not assume the value written will be one of the two possible “reasonable” values.
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Data races

A data race occurs whenever
» two threads can access the same memory location concurrently, and

> at |least one of the accesses is a write.

Two kinds of data races:
» read-write: one thread reads and the other writes, or

» write-write: both threads write

A data race in a Pthreads program results in undefined behavior.
The program could do “anything” (crash, return weird results,. . .)

You can not assume the value written will be one of the two possible “reasonable” values.
» it is the programmer’s responsibility to avoid all data races
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Mutexes
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Mutexes

» mutex = “mutual exclusion lock”
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Mutexes

» mutex = “mutual exclusion lock”

-

» used to guarantee that at most one thread can access a shared object at any time
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in this example, a single mutex is used to control access to sum




Mutexes

mutex = “mutual exclusion lock”

many variations possible; for now, use default settings
supports “lock” and “unlock” operations
in this example, a single mutex is used to control access to sum

each thread obtains the lock before reading and modifying sum
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...and releases lock when it is done
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Mutexes

-

mutex = “mutual exclusion lock”

used to guarantee that at most one thread can access a shared object at any time
many variations possible; for now, use default settings

supports “lock” and “unlock” operations

in this example, a single mutex is used to control access to sum

each thread obtains the lock before reading and modifying sum

...and releases lock when it is done

VVyVvyVVYVYVYY

a thread will block when trying to obtain the lock if another thread owns the lock
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add_pthread_fix.c

int nthreads, sum = O;
pthread_mutex_t mutexsum;
void* hello(void* arg) {
int * tidp = (intx)arg;
pthread_mutex_lock(&mutexsum) ;
sum += (*tidp)+1;
pthread_mutex_unlock(&mutexsum) ;
return NULL;
}
int main (int argc, char xargv[]) {
nthreads = atoi(argv[1]);
pthread_t threads[nthreads];
int tids[nthreads];
pthread_mutex_init (&mutexsum, NULL) ;
for (int i=0; i<nthreads; i++) tids[i] = i;
for (int i=0; i<nthreads; i++) pthread_create(threads + i, NULL, hello, tids + i);
for (int i=0; i<nthreads; i++) pthread_join(threads[i], NULL);
pthread_mutex_destroy(&mutexsum) ;
printf("The sum is %d\n", sum);

}
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Test add_pthread_fix.c

for i in {1..1000}; do ./add_pthread_fix.exec 20; done | sort -n | uniq -c
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Test add_pthread_fix.c

for i in {1..1000}; do ./add_pthread_fix.exec 20; done | sort -n | uniq -c

1000 The sum is 210
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Mutex semantics
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Mutex semantics

» the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state
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» the semantics of a concurrency primitive can be specified by
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2. specifying the atomic operations that change the state

» mutex state

» the state is either a reference to one thread or NULL
» the thread that “owns” the locked lock, or the lock is open
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Mutex semantics

» the semantics of a concurrency primitive can be specified by
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2. specifying the atomic operations that change the state

» mutex state
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» atomic actions
» lock

> if the state is NULL, a thread t may execute this action and the state becomes t
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» all other actions: undefined

P a thread that does not own the lock attempts to unlock it
» a thread that owns the lock attempts to lock it
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Mutex semantics

» the semantics of a concurrency primitive can be specified by

1. a model of the state, and
2. specifying the atomic operations that change the state

» mutex state

» the state is either a reference to one thread or NULL
» the thread that “owns” the locked lock, or the lock is open

» atomic actions
» lock

> if the state is NULL, a thread t may execute this action and the state becomes t
P if the state is non-null, t will block

» unlock: if the state is t then t may execute this action and state becomes NULL
» all other actions: undefined

P a thread that does not own the lock attempts to unlock it

» a thread that owns the lock attempts to lock it

» this is all for basic mutexes; other variations are more lenient
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Using mutexes

P> a mutex is typically used to control access to some shared data
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Using mutexes

P> a mutex is typically used to control access to some shared data
» this is purely a programming convention

» no formal relationship between the mutex and the data
» programmer should document the relationship clearly
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Using mutexes

P> a mutex is typically used to control access to some shared data
» this is purely a programming convention

» no formal relationship between the mutex and the data

» programmer should document the relationship clearly
» typical control flow:

1. obtain lock;
2. access the shared data;
3. release the lock;
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Using mutexes

P> a mutex is typically used to control access to some shared data
» this is purely a programming convention

» no formal relationship between the mutex and the data
» programmer should document the relationship clearly

» typical control flow:

1. obtain lock;
2. access the shared data;
3. release the lock;

» do this wherever the data is accessed!
> if you miss one case, all bets are off
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Pthreads mutex interface
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Pthreads mutex interface

> type
> pthread_mutex_t : opaque handle to a mutex
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Pthreads mutex interface

> type
> pthread_mutex_t : opaque handle to a mutex

» functions

int pthread_mutex_init ( pthread_mutex_t * mutex,

pthread_mutexattr_t * attr );

int pthread_mutex_destroy ( pthread_mutex_t * mutex
int pthread_mutex_lock ( pthread_mutex_t * mutex
int pthread_mutex_unlock ( pthread_mutex_t * mutex

)
)
).

3
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int pthread_mutex_init ( pthread_mutex_t * mutex,
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int pthread_mutex_destroy ( pthread_mutex_t * mutex
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» use NULL for the attribute argument for now
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Pthreads mutex interface

> type
> pthread_mutex_t : opaque handle to a mutex

» functions

int pthread_mutex_init ( pthread_mutex_t * mutex,

pthread_mutexattr_t * attr );
int pthread_mutex_destroy ( pthread_mutex_t * mutex )
int pthread_mutex_lock ( pthread_mutex_t * mutex )
int pthread_mutex_unlock ( pthread_mutex_t * mutex )

I

3

» use NULL for the attribute argument for now

» all functions return error code (O=success)
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Mutexes and memory

» different fields of a struct occupy distinct memory locations
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» different cells of an array are different memory locations
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Mutexes and memory

» different fields of a struct occupy distinct memory locations
» different cells of an array are different memory locations

> a mutex is not required if each thread is accessing its own section of the array/struct
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Mutexes and memory

» different fields of a struct occupy distinct memory locations
» different cells of an array are different memory locations

> a mutex is not required if each thread is accessing its own section of the array/struct
» however performance problems are possible

» the cache system may have to constantly reload the line containing your cell
» if another thread is accessing a nearby cell in the same line
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The Critical Section Problem
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The Critical Section Problem

» another common concurrent program pattern:

while (true) {
enter critical section
CRITICAL SECTION: only one thread at a time
exit critical section
NON-CRITICAL SECTION: any number of threads can execute
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while (true) {
enter critical section
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NON-CRITICAL SECTION: any number of threads can execute

}
> the problem: design entrance/exit protocols (and appropriate state) such that
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Critical section: desired properties

1. deadlock-free
2. no unnecessary delay

» a thread that is trying to enter the critical section when no one else is in the critical section
will enter without delay

3. mutual exclusion: at most one thread in critical section at any time
4. fairness (or, no starvation)

> if a thread is trying to enter the critical section then eventually it will succeed (after some
finite delay)

Solution #1: use a mutex
> see crit_sec_mutex.c

» which properties hold?
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2. no unnecessary delay

» a thread that is trying to enter the critical section when no one else is in the critical section
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» What about 47
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finite delay)
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> see crit_sec_mutex.c
» which properties hold?
> 1-3: yes
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Critical section: desired properties

1. deadlock-free

2. no unnecessary delay

» a thread that is trying to enter the critical section when no one else is in the critical section
will enter without delay

3. mutual exclusion: at most one thread in critical section at any time
4. fairness (or, no starvation)

> if a thread is trying to enter the critical section then eventually it will succeed (after some
finite delay)

Solution #1: use a mutex
> see crit_sec_mutex.c
» which properties hold?
> 1-3: yes
» What about 47 Not necessarily. This is a hard problem.

» famous solutions: Lamport's bakery algorithm, Peterson’s mutual exclusion algorithm
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