
CISC 372: Parallel Computing
Threads, part 3: condition variables

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware



Example: bank account

const int max = 10; // keep bal in 0..max

int bal = 0;

pthread_mutex_t mutex;

void * deposit_thread(void * arg) {

while (1) {

// WAIT UNTIL bal<10 ...

pthread_mutex_lock(&mutex);

bal++;

pthread_mutex_unlock(&mutex);

}

}

void * withdraw_thread(void * arg) {

while (1) {

// WAIT UNTIL bal>0 ...

pthread_mutex_lock(&mutex);

bal--;

pthread_mutex_unlock(&mutex);

}

}

I only want depositor to take the lock if bal<10

I only want withdrawer to take the lock if bal>0

I an example of the producer-consumer pattern
S.F. Siegel � CISC 372: Parallel Computing � Threads 2



Bad solution

while (true) {

pthread_mutex_lock(&mutex);

if (bal > 0) break;

pthread_mutex_unlock(&mutex);

}

bal--;

pthread_mutex_unlock(&mutex);

I functionally, this is correct
I performance-wise: disaster

I thread is constantly spinning, rechecking bal repeatedly, unnecessarily
I . . . and taking and releasing lock
I a thread that should be quietly waiting is instead constantly consuming resources (CPU)
I if many threads do this: lock contention
I performance grinds to a halt

S.F. Siegel � CISC 372: Parallel Computing � Threads 3



Bad solution

while (true) {

pthread_mutex_lock(&mutex);

if (bal > 0) break;

pthread_mutex_unlock(&mutex);

}

bal--;

pthread_mutex_unlock(&mutex);

I functionally, this is correct

I performance-wise: disaster
I thread is constantly spinning, rechecking bal repeatedly, unnecessarily
I . . . and taking and releasing lock
I a thread that should be quietly waiting is instead constantly consuming resources (CPU)
I if many threads do this: lock contention
I performance grinds to a halt

S.F. Siegel � CISC 372: Parallel Computing � Threads 3



Bad solution

while (true) {

pthread_mutex_lock(&mutex);

if (bal > 0) break;

pthread_mutex_unlock(&mutex);

}

bal--;

pthread_mutex_unlock(&mutex);

I functionally, this is correct
I performance-wise: disaster

I thread is constantly spinning, rechecking bal repeatedly, unnecessarily
I . . . and taking and releasing lock
I a thread that should be quietly waiting is instead constantly consuming resources (CPU)
I if many threads do this: lock contention
I performance grinds to a halt

S.F. Siegel � CISC 372: Parallel Computing � Threads 3



Monitors

I the “monitor” is a standard solution to this problem

I a concurrency concept introduced by Per Brinch Hansen and C.A.R. Hoare in early 1970s

I used in many programming languages/APIs

I Concurrent Pascal (1974, Hansen)

I Java: synchronize, wait(), notify(), notifyAll()

I Pthreads: condition variables and mutexes

I monitor = condition variable + mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 4



Monitors

I the “monitor” is a standard solution to this problem

I a concurrency concept introduced by Per Brinch Hansen and C.A.R. Hoare in early 1970s

I used in many programming languages/APIs

I Concurrent Pascal (1974, Hansen)

I Java: synchronize, wait(), notify(), notifyAll()

I Pthreads: condition variables and mutexes

I monitor = condition variable + mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 4



Monitors

I the “monitor” is a standard solution to this problem

I a concurrency concept introduced by Per Brinch Hansen and C.A.R. Hoare in early 1970s

I used in many programming languages/APIs

I Concurrent Pascal (1974, Hansen)

I Java: synchronize, wait(), notify(), notifyAll()

I Pthreads: condition variables and mutexes

I monitor = condition variable + mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 4



Monitors

I the “monitor” is a standard solution to this problem

I a concurrency concept introduced by Per Brinch Hansen and C.A.R. Hoare in early 1970s

I used in many programming languages/APIs

I Concurrent Pascal (1974, Hansen)

I Java: synchronize, wait(), notify(), notifyAll()

I Pthreads: condition variables and mutexes

I monitor = condition variable + mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 4



Monitors

I the “monitor” is a standard solution to this problem

I a concurrency concept introduced by Per Brinch Hansen and C.A.R. Hoare in early 1970s

I used in many programming languages/APIs

I Concurrent Pascal (1974, Hansen)

I Java: synchronize, wait(), notify(), notifyAll()

I Pthreads: condition variables and mutexes

I monitor = condition variable + mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 4



Monitors

I the “monitor” is a standard solution to this problem

I a concurrency concept introduced by Per Brinch Hansen and C.A.R. Hoare in early 1970s

I used in many programming languages/APIs

I Concurrent Pascal (1974, Hansen)

I Java: synchronize, wait(), notify(), notifyAll()

I Pthreads: condition variables and mutexes

I monitor = condition variable + mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 4



Monitors

I the “monitor” is a standard solution to this problem

I a concurrency concept introduced by Per Brinch Hansen and C.A.R. Hoare in early 1970s

I used in many programming languages/APIs

I Concurrent Pascal (1974, Hansen)

I Java: synchronize, wait(), notify(), notifyAll()

I Pthreads: condition variables and mutexes

I monitor = condition variable + mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 4



Condition variables

I a condition variable c is used with a mutex

I when a thread owns the mutex, it may want to wait until some condition holds (due to
actions of other threads)

I it can do this by waiting on c

I this reliquishes the locks and the thread goes to sleep

I other threads run

I at some point in future, another thread can issue a notification on c
I the thread that is asleep may be notified

I it wakes up and has the opportunity to regain the lock once the thread owning the lock
relinquishes it

I typically, after the thread wakes up, it will check some condition
I if the condition holds, great, it continues running with the lock
I otherwise, it waits again (loops are good for this)

S.F. Siegel � CISC 372: Parallel Computing � Threads 5



Condition variables

I a condition variable c is used with a mutex

I when a thread owns the mutex, it may want to wait until some condition holds (due to
actions of other threads)

I it can do this by waiting on c

I this reliquishes the locks and the thread goes to sleep

I other threads run

I at some point in future, another thread can issue a notification on c
I the thread that is asleep may be notified

I it wakes up and has the opportunity to regain the lock once the thread owning the lock
relinquishes it

I typically, after the thread wakes up, it will check some condition
I if the condition holds, great, it continues running with the lock
I otherwise, it waits again (loops are good for this)

S.F. Siegel � CISC 372: Parallel Computing � Threads 5



Condition variables

I a condition variable c is used with a mutex

I when a thread owns the mutex, it may want to wait until some condition holds (due to
actions of other threads)

I it can do this by waiting on c

I this reliquishes the locks and the thread goes to sleep

I other threads run

I at some point in future, another thread can issue a notification on c
I the thread that is asleep may be notified

I it wakes up and has the opportunity to regain the lock once the thread owning the lock
relinquishes it

I typically, after the thread wakes up, it will check some condition
I if the condition holds, great, it continues running with the lock
I otherwise, it waits again (loops are good for this)

S.F. Siegel � CISC 372: Parallel Computing � Threads 5



Condition variables

I a condition variable c is used with a mutex

I when a thread owns the mutex, it may want to wait until some condition holds (due to
actions of other threads)

I it can do this by waiting on c

I this reliquishes the locks and the thread goes to sleep

I other threads run

I at some point in future, another thread can issue a notification on c
I the thread that is asleep may be notified

I it wakes up and has the opportunity to regain the lock once the thread owning the lock
relinquishes it

I typically, after the thread wakes up, it will check some condition
I if the condition holds, great, it continues running with the lock
I otherwise, it waits again (loops are good for this)

S.F. Siegel � CISC 372: Parallel Computing � Threads 5



Condition variables

I a condition variable c is used with a mutex

I when a thread owns the mutex, it may want to wait until some condition holds (due to
actions of other threads)

I it can do this by waiting on c

I this reliquishes the locks and the thread goes to sleep

I other threads run

I at some point in future, another thread can issue a notification on c
I the thread that is asleep may be notified

I it wakes up and has the opportunity to regain the lock once the thread owning the lock
relinquishes it

I typically, after the thread wakes up, it will check some condition
I if the condition holds, great, it continues running with the lock
I otherwise, it waits again (loops are good for this)

S.F. Siegel � CISC 372: Parallel Computing � Threads 5



Condition variables

I a condition variable c is used with a mutex

I when a thread owns the mutex, it may want to wait until some condition holds (due to
actions of other threads)

I it can do this by waiting on c

I this reliquishes the locks and the thread goes to sleep

I other threads run

I at some point in future, another thread can issue a notification on c
I the thread that is asleep may be notified

I it wakes up and has the opportunity to regain the lock once the thread owning the lock
relinquishes it

I typically, after the thread wakes up, it will check some condition
I if the condition holds, great, it continues running with the lock
I otherwise, it waits again (loops are good for this)

S.F. Siegel � CISC 372: Parallel Computing � Threads 5



Condition variables

I a condition variable c is used with a mutex

I when a thread owns the mutex, it may want to wait until some condition holds (due to
actions of other threads)

I it can do this by waiting on c

I this reliquishes the locks and the thread goes to sleep

I other threads run

I at some point in future, another thread can issue a notification on c

I the thread that is asleep may be notified
I it wakes up and has the opportunity to regain the lock once the thread owning the lock

relinquishes it
I typically, after the thread wakes up, it will check some condition
I if the condition holds, great, it continues running with the lock
I otherwise, it waits again (loops are good for this)

S.F. Siegel � CISC 372: Parallel Computing � Threads 5



Condition variables

I a condition variable c is used with a mutex

I when a thread owns the mutex, it may want to wait until some condition holds (due to
actions of other threads)

I it can do this by waiting on c

I this reliquishes the locks and the thread goes to sleep

I other threads run

I at some point in future, another thread can issue a notification on c
I the thread that is asleep may be notified

I it wakes up and has the opportunity to regain the lock once the thread owning the lock
relinquishes it

I typically, after the thread wakes up, it will check some condition
I if the condition holds, great, it continues running with the lock
I otherwise, it waits again (loops are good for this)

S.F. Siegel � CISC 372: Parallel Computing � Threads 5



Condition variables

I a condition variable c is used with a mutex

I when a thread owns the mutex, it may want to wait until some condition holds (due to
actions of other threads)

I it can do this by waiting on c

I this reliquishes the locks and the thread goes to sleep

I other threads run

I at some point in future, another thread can issue a notification on c
I the thread that is asleep may be notified

I it wakes up and has the opportunity to regain the lock once the thread owning the lock
relinquishes it

I typically, after the thread wakes up, it will check some condition
I if the condition holds, great, it continues running with the lock
I otherwise, it waits again (loops are good for this)

S.F. Siegel � CISC 372: Parallel Computing � Threads 5



Condition variables

I a condition variable c is used with a mutex

I when a thread owns the mutex, it may want to wait until some condition holds (due to
actions of other threads)

I it can do this by waiting on c

I this reliquishes the locks and the thread goes to sleep

I other threads run

I at some point in future, another thread can issue a notification on c
I the thread that is asleep may be notified

I it wakes up and has the opportunity to regain the lock once the thread owning the lock
relinquishes it

I typically, after the thread wakes up, it will check some condition

I if the condition holds, great, it continues running with the lock
I otherwise, it waits again (loops are good for this)

S.F. Siegel � CISC 372: Parallel Computing � Threads 5



Condition variables

I a condition variable c is used with a mutex

I when a thread owns the mutex, it may want to wait until some condition holds (due to
actions of other threads)

I it can do this by waiting on c

I this reliquishes the locks and the thread goes to sleep

I other threads run

I at some point in future, another thread can issue a notification on c
I the thread that is asleep may be notified

I it wakes up and has the opportunity to regain the lock once the thread owning the lock
relinquishes it

I typically, after the thread wakes up, it will check some condition
I if the condition holds, great, it continues running with the lock

I otherwise, it waits again (loops are good for this)

S.F. Siegel � CISC 372: Parallel Computing � Threads 5



Condition variables

I a condition variable c is used with a mutex

I when a thread owns the mutex, it may want to wait until some condition holds (due to
actions of other threads)

I it can do this by waiting on c

I this reliquishes the locks and the thread goes to sleep

I other threads run

I at some point in future, another thread can issue a notification on c
I the thread that is asleep may be notified

I it wakes up and has the opportunity to regain the lock once the thread owning the lock
relinquishes it

I typically, after the thread wakes up, it will check some condition
I if the condition holds, great, it continues running with the lock
I otherwise, it waits again (loops are good for this)

S.F. Siegel � CISC 372: Parallel Computing � Threads 5



Condition variables in Pthreads

I pthread_cond_init(pthread_cond_t * cond, NULL)
I initialize a condition variable

I int pthread_cond_destroy(pthread_cond_t * cond);
I destroy the previously initialized condition variable

I int pthread_cond_signal(pthread_cond_t * cond);
I wake up one or more threads waiting on cond

I int pthread_cond_broadcast(pthread_cond_t * cond);
I wake up all threads waiting on cond

I int pthread_cond_wait(pthread_cond_t * cond, pthread_mutex_t * mutex);

1. release lock on mutex

2. go to sleep
3. when woken up: try to regain lock on mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 6



Condition variables in Pthreads

I pthread_cond_init(pthread_cond_t * cond, NULL)
I initialize a condition variable

I int pthread_cond_destroy(pthread_cond_t * cond);
I destroy the previously initialized condition variable

I int pthread_cond_signal(pthread_cond_t * cond);
I wake up one or more threads waiting on cond

I int pthread_cond_broadcast(pthread_cond_t * cond);
I wake up all threads waiting on cond

I int pthread_cond_wait(pthread_cond_t * cond, pthread_mutex_t * mutex);

1. release lock on mutex

2. go to sleep
3. when woken up: try to regain lock on mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 6



Condition variables in Pthreads

I pthread_cond_init(pthread_cond_t * cond, NULL)
I initialize a condition variable

I int pthread_cond_destroy(pthread_cond_t * cond);
I destroy the previously initialized condition variable

I int pthread_cond_signal(pthread_cond_t * cond);
I wake up one or more threads waiting on cond

I int pthread_cond_broadcast(pthread_cond_t * cond);
I wake up all threads waiting on cond

I int pthread_cond_wait(pthread_cond_t * cond, pthread_mutex_t * mutex);

1. release lock on mutex

2. go to sleep
3. when woken up: try to regain lock on mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 6



Condition variables in Pthreads

I pthread_cond_init(pthread_cond_t * cond, NULL)
I initialize a condition variable

I int pthread_cond_destroy(pthread_cond_t * cond);
I destroy the previously initialized condition variable

I int pthread_cond_signal(pthread_cond_t * cond);
I wake up one or more threads waiting on cond

I int pthread_cond_broadcast(pthread_cond_t * cond);
I wake up all threads waiting on cond

I int pthread_cond_wait(pthread_cond_t * cond, pthread_mutex_t * mutex);

1. release lock on mutex

2. go to sleep
3. when woken up: try to regain lock on mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 6



Condition variables in Pthreads

I pthread_cond_init(pthread_cond_t * cond, NULL)
I initialize a condition variable

I int pthread_cond_destroy(pthread_cond_t * cond);
I destroy the previously initialized condition variable

I int pthread_cond_signal(pthread_cond_t * cond);
I wake up one or more threads waiting on cond

I int pthread_cond_broadcast(pthread_cond_t * cond);
I wake up all threads waiting on cond

I int pthread_cond_wait(pthread_cond_t * cond, pthread_mutex_t * mutex);

1. release lock on mutex

2. go to sleep
3. when woken up: try to regain lock on mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 6



Condition variables in Pthreads

I pthread_cond_init(pthread_cond_t * cond, NULL)
I initialize a condition variable

I int pthread_cond_destroy(pthread_cond_t * cond);
I destroy the previously initialized condition variable

I int pthread_cond_signal(pthread_cond_t * cond);
I wake up one or more threads waiting on cond

I int pthread_cond_broadcast(pthread_cond_t * cond);
I wake up all threads waiting on cond

I int pthread_cond_wait(pthread_cond_t * cond, pthread_mutex_t * mutex);

1. release lock on mutex

2. go to sleep
3. when woken up: try to regain lock on mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 6



Semantics of a condition variable c

I every thread is either running, blocked waiting for lock, or asleep
I a sleeping thread is not contending for resources/consuming CPU cycles
I note: I am using “asleep” here in a non-standard sense

I state of c: set of waiting threads (“wait-set”)
I wait involves 3 atomic operations:

1. release lock on mutex, state changes from running to asleep, thread added to c’s wait-set
2. when signaled: state changes from asleep to blocked, thread removed from c’s wait-set
3. later the thread may regain the lock on mutex

I just like any thread trying to unlock mutex
I once lock has been obtained, the call to wait returns

I signal
I changes state of one or more waiting threads as above, removes them from c’s wait-set
I usually called from thread that owns lock on mutex, but not required by Pthreads

I broadcast: signals all waiting threads, c’s wait-set become empty

S.F. Siegel � CISC 372: Parallel Computing � Threads 7



Semantics of a condition variable c

I every thread is either running, blocked waiting for lock, or asleep
I a sleeping thread is not contending for resources/consuming CPU cycles
I note: I am using “asleep” here in a non-standard sense

I state of c: set of waiting threads (“wait-set”)
I wait involves 3 atomic operations:

1. release lock on mutex, state changes from running to asleep, thread added to c’s wait-set
2. when signaled: state changes from asleep to blocked, thread removed from c’s wait-set
3. later the thread may regain the lock on mutex

I just like any thread trying to unlock mutex
I once lock has been obtained, the call to wait returns

I signal
I changes state of one or more waiting threads as above, removes them from c’s wait-set
I usually called from thread that owns lock on mutex, but not required by Pthreads

I broadcast: signals all waiting threads, c’s wait-set become empty

S.F. Siegel � CISC 372: Parallel Computing � Threads 7



Semantics of a condition variable c

I every thread is either running, blocked waiting for lock, or asleep
I a sleeping thread is not contending for resources/consuming CPU cycles
I note: I am using “asleep” here in a non-standard sense

I state of c: set of waiting threads (“wait-set”)

I wait involves 3 atomic operations:

1. release lock on mutex, state changes from running to asleep, thread added to c’s wait-set
2. when signaled: state changes from asleep to blocked, thread removed from c’s wait-set
3. later the thread may regain the lock on mutex

I just like any thread trying to unlock mutex
I once lock has been obtained, the call to wait returns

I signal
I changes state of one or more waiting threads as above, removes them from c’s wait-set
I usually called from thread that owns lock on mutex, but not required by Pthreads

I broadcast: signals all waiting threads, c’s wait-set become empty

S.F. Siegel � CISC 372: Parallel Computing � Threads 7



Semantics of a condition variable c

I every thread is either running, blocked waiting for lock, or asleep
I a sleeping thread is not contending for resources/consuming CPU cycles
I note: I am using “asleep” here in a non-standard sense

I state of c: set of waiting threads (“wait-set”)
I wait involves 3 atomic operations:

1. release lock on mutex, state changes from running to asleep, thread added to c’s wait-set
2. when signaled: state changes from asleep to blocked, thread removed from c’s wait-set
3. later the thread may regain the lock on mutex

I just like any thread trying to unlock mutex
I once lock has been obtained, the call to wait returns

I signal
I changes state of one or more waiting threads as above, removes them from c’s wait-set
I usually called from thread that owns lock on mutex, but not required by Pthreads

I broadcast: signals all waiting threads, c’s wait-set become empty

S.F. Siegel � CISC 372: Parallel Computing � Threads 7



Semantics of a condition variable c

I every thread is either running, blocked waiting for lock, or asleep
I a sleeping thread is not contending for resources/consuming CPU cycles
I note: I am using “asleep” here in a non-standard sense

I state of c: set of waiting threads (“wait-set”)
I wait involves 3 atomic operations:

1. release lock on mutex, state changes from running to asleep, thread added to c’s wait-set

2. when signaled: state changes from asleep to blocked, thread removed from c’s wait-set
3. later the thread may regain the lock on mutex

I just like any thread trying to unlock mutex
I once lock has been obtained, the call to wait returns

I signal
I changes state of one or more waiting threads as above, removes them from c’s wait-set
I usually called from thread that owns lock on mutex, but not required by Pthreads

I broadcast: signals all waiting threads, c’s wait-set become empty

S.F. Siegel � CISC 372: Parallel Computing � Threads 7



Semantics of a condition variable c

I every thread is either running, blocked waiting for lock, or asleep
I a sleeping thread is not contending for resources/consuming CPU cycles
I note: I am using “asleep” here in a non-standard sense

I state of c: set of waiting threads (“wait-set”)
I wait involves 3 atomic operations:

1. release lock on mutex, state changes from running to asleep, thread added to c’s wait-set
2. when signaled: state changes from asleep to blocked, thread removed from c’s wait-set

3. later the thread may regain the lock on mutex
I just like any thread trying to unlock mutex
I once lock has been obtained, the call to wait returns

I signal
I changes state of one or more waiting threads as above, removes them from c’s wait-set
I usually called from thread that owns lock on mutex, but not required by Pthreads

I broadcast: signals all waiting threads, c’s wait-set become empty

S.F. Siegel � CISC 372: Parallel Computing � Threads 7



Semantics of a condition variable c

I every thread is either running, blocked waiting for lock, or asleep
I a sleeping thread is not contending for resources/consuming CPU cycles
I note: I am using “asleep” here in a non-standard sense

I state of c: set of waiting threads (“wait-set”)
I wait involves 3 atomic operations:

1. release lock on mutex, state changes from running to asleep, thread added to c’s wait-set
2. when signaled: state changes from asleep to blocked, thread removed from c’s wait-set
3. later the thread may regain the lock on mutex

I just like any thread trying to unlock mutex
I once lock has been obtained, the call to wait returns

I signal
I changes state of one or more waiting threads as above, removes them from c’s wait-set
I usually called from thread that owns lock on mutex, but not required by Pthreads

I broadcast: signals all waiting threads, c’s wait-set become empty

S.F. Siegel � CISC 372: Parallel Computing � Threads 7



Semantics of a condition variable c

I every thread is either running, blocked waiting for lock, or asleep
I a sleeping thread is not contending for resources/consuming CPU cycles
I note: I am using “asleep” here in a non-standard sense

I state of c: set of waiting threads (“wait-set”)
I wait involves 3 atomic operations:

1. release lock on mutex, state changes from running to asleep, thread added to c’s wait-set
2. when signaled: state changes from asleep to blocked, thread removed from c’s wait-set
3. later the thread may regain the lock on mutex

I just like any thread trying to unlock mutex
I once lock has been obtained, the call to wait returns

I signal

I changes state of one or more waiting threads as above, removes them from c’s wait-set
I usually called from thread that owns lock on mutex, but not required by Pthreads

I broadcast: signals all waiting threads, c’s wait-set become empty

S.F. Siegel � CISC 372: Parallel Computing � Threads 7



Semantics of a condition variable c

I every thread is either running, blocked waiting for lock, or asleep
I a sleeping thread is not contending for resources/consuming CPU cycles
I note: I am using “asleep” here in a non-standard sense

I state of c: set of waiting threads (“wait-set”)
I wait involves 3 atomic operations:

1. release lock on mutex, state changes from running to asleep, thread added to c’s wait-set
2. when signaled: state changes from asleep to blocked, thread removed from c’s wait-set
3. later the thread may regain the lock on mutex

I just like any thread trying to unlock mutex
I once lock has been obtained, the call to wait returns

I signal
I changes state of one or more waiting threads as above, removes them from c’s wait-set

I usually called from thread that owns lock on mutex, but not required by Pthreads

I broadcast: signals all waiting threads, c’s wait-set become empty

S.F. Siegel � CISC 372: Parallel Computing � Threads 7



Semantics of a condition variable c

I every thread is either running, blocked waiting for lock, or asleep
I a sleeping thread is not contending for resources/consuming CPU cycles
I note: I am using “asleep” here in a non-standard sense

I state of c: set of waiting threads (“wait-set”)
I wait involves 3 atomic operations:

1. release lock on mutex, state changes from running to asleep, thread added to c’s wait-set
2. when signaled: state changes from asleep to blocked, thread removed from c’s wait-set
3. later the thread may regain the lock on mutex

I just like any thread trying to unlock mutex
I once lock has been obtained, the call to wait returns

I signal
I changes state of one or more waiting threads as above, removes them from c’s wait-set
I usually called from thread that owns lock on mutex, but not required by Pthreads

I broadcast: signals all waiting threads, c’s wait-set become empty

S.F. Siegel � CISC 372: Parallel Computing � Threads 7



Semantics of a condition variable c

I every thread is either running, blocked waiting for lock, or asleep
I a sleeping thread is not contending for resources/consuming CPU cycles
I note: I am using “asleep” here in a non-standard sense

I state of c: set of waiting threads (“wait-set”)
I wait involves 3 atomic operations:

1. release lock on mutex, state changes from running to asleep, thread added to c’s wait-set
2. when signaled: state changes from asleep to blocked, thread removed from c’s wait-set
3. later the thread may regain the lock on mutex

I just like any thread trying to unlock mutex
I once lock has been obtained, the call to wait returns

I signal
I changes state of one or more waiting threads as above, removes them from c’s wait-set
I usually called from thread that owns lock on mutex, but not required by Pthreads

I broadcast: signals all waiting threads, c’s wait-set become empty

S.F. Siegel � CISC 372: Parallel Computing � Threads 7



Typical pattern for using condition variables

obtain lock on mutex;

...

while (!expr) {

wait on cond;

}

// at this point you know expr holds

// assuming expr can only be changed

// by a thread holding lock on mutex!

...

release lock on mutex;

S.F. Siegel � CISC 372: Parallel Computing � Threads 8



Bank account: bank1.c

const int max = 10; // keep bal in 0..max

int bal = 0;

pthread_mutex_t mutex;

pthread_cond_t balLT10, balGT0;

void * deposit_thread(void * arg) {

while (1) {

pthread_mutex_lock(&mutex);

while (!(bal<max))

pthread_cond_wait(&balLT10, &mutex);

// now I know bal<10 and I have the lock

bal++;

pthread_cond_signal(&balGT0);

pthread_mutex_unlock(&mutex);

}

}

void * withdraw_thread(void * arg) {

while (1) {

pthread_mutex_lock(&mutex);

while (!(bal>0))

pthread_cond_wait(&balGT0, &mutex);

// now I know bal>0 and I have the lock

bal--;

pthread_cond_signal(&balLT10);

pthread_mutex_unlock(&mutex);

}

}

S.F. Siegel � CISC 372: Parallel Computing � Threads 9



Generalized: bank2.c

I now allow multiple accounts, multiple depositors, multiple withdrawers
I a depositor randomly chooses an account and an amount

I deposits the amount to the account (no waiting)
I repeat forever

I a withdrawer randomly chooses an account and an amount
I waits for the balance to be at least the amount
I withdraws the amount from the account
I repeat forever

I command line args: number of accounts, number of depositors, number of withdrawers
I solution

I one mutex and one condition variable for each account
I mutex guards all accesses to the account balance
I condition variable signals whenever a deposit is made to the account
I depositor signals every time it makes a deposit to the account
I withdrawer waits, and upon being signaled, checks the balance

S.F. Siegel � CISC 372: Parallel Computing � Threads 10



Generalized: bank2.c

I now allow multiple accounts, multiple depositors, multiple withdrawers

I a depositor randomly chooses an account and an amount
I deposits the amount to the account (no waiting)
I repeat forever

I a withdrawer randomly chooses an account and an amount
I waits for the balance to be at least the amount
I withdraws the amount from the account
I repeat forever

I command line args: number of accounts, number of depositors, number of withdrawers
I solution

I one mutex and one condition variable for each account
I mutex guards all accesses to the account balance
I condition variable signals whenever a deposit is made to the account
I depositor signals every time it makes a deposit to the account
I withdrawer waits, and upon being signaled, checks the balance

S.F. Siegel � CISC 372: Parallel Computing � Threads 10



Generalized: bank2.c

I now allow multiple accounts, multiple depositors, multiple withdrawers
I a depositor randomly chooses an account and an amount

I deposits the amount to the account (no waiting)
I repeat forever

I a withdrawer randomly chooses an account and an amount
I waits for the balance to be at least the amount
I withdraws the amount from the account
I repeat forever

I command line args: number of accounts, number of depositors, number of withdrawers
I solution

I one mutex and one condition variable for each account
I mutex guards all accesses to the account balance
I condition variable signals whenever a deposit is made to the account
I depositor signals every time it makes a deposit to the account
I withdrawer waits, and upon being signaled, checks the balance

S.F. Siegel � CISC 372: Parallel Computing � Threads 10



Generalized: bank2.c

I now allow multiple accounts, multiple depositors, multiple withdrawers
I a depositor randomly chooses an account and an amount

I deposits the amount to the account (no waiting)
I repeat forever

I a withdrawer randomly chooses an account and an amount
I waits for the balance to be at least the amount
I withdraws the amount from the account
I repeat forever

I command line args: number of accounts, number of depositors, number of withdrawers
I solution

I one mutex and one condition variable for each account
I mutex guards all accesses to the account balance
I condition variable signals whenever a deposit is made to the account
I depositor signals every time it makes a deposit to the account
I withdrawer waits, and upon being signaled, checks the balance

S.F. Siegel � CISC 372: Parallel Computing � Threads 10



Generalized: bank2.c

I now allow multiple accounts, multiple depositors, multiple withdrawers
I a depositor randomly chooses an account and an amount

I deposits the amount to the account (no waiting)
I repeat forever

I a withdrawer randomly chooses an account and an amount
I waits for the balance to be at least the amount
I withdraws the amount from the account
I repeat forever

I command line args: number of accounts, number of depositors, number of withdrawers

I solution
I one mutex and one condition variable for each account
I mutex guards all accesses to the account balance
I condition variable signals whenever a deposit is made to the account
I depositor signals every time it makes a deposit to the account
I withdrawer waits, and upon being signaled, checks the balance

S.F. Siegel � CISC 372: Parallel Computing � Threads 10



Generalized: bank2.c

I now allow multiple accounts, multiple depositors, multiple withdrawers
I a depositor randomly chooses an account and an amount

I deposits the amount to the account (no waiting)
I repeat forever

I a withdrawer randomly chooses an account and an amount
I waits for the balance to be at least the amount
I withdraws the amount from the account
I repeat forever

I command line args: number of accounts, number of depositors, number of withdrawers
I solution

I one mutex and one condition variable for each account
I mutex guards all accesses to the account balance
I condition variable signals whenever a deposit is made to the account
I depositor signals every time it makes a deposit to the account
I withdrawer waits, and upon being signaled, checks the balance

S.F. Siegel � CISC 372: Parallel Computing � Threads 10



Application: concurrency flags

I a flag is a boolean variable
I a concurrency flag is a shared boolean variable used in a particular disciplined way

I also known as a “binary semaphore”

I concurrency flags are basic concurrency building blocks
I can be used to construct all kinds of complex synchronization patterns and data structures

I mutual exclusion protocols, barriers, reductions, . . .

I state: a flag has two values, 0 and 1
I atomic operations

I raise
I can only be invoked when value is 0, otherwise error
I sets value to 1

I lower
I blocks until value is 1, then sets value to 0 in one atomic step
I no other thread can perform any operation on flag between check that value is 1 and set to 0

S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Application: concurrency flags

I a flag is a boolean variable

I a concurrency flag is a shared boolean variable used in a particular disciplined way
I also known as a “binary semaphore”

I concurrency flags are basic concurrency building blocks
I can be used to construct all kinds of complex synchronization patterns and data structures

I mutual exclusion protocols, barriers, reductions, . . .

I state: a flag has two values, 0 and 1
I atomic operations

I raise
I can only be invoked when value is 0, otherwise error
I sets value to 1

I lower
I blocks until value is 1, then sets value to 0 in one atomic step
I no other thread can perform any operation on flag between check that value is 1 and set to 0

S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Application: concurrency flags

I a flag is a boolean variable
I a concurrency flag is a shared boolean variable used in a particular disciplined way

I also known as a “binary semaphore”

I concurrency flags are basic concurrency building blocks
I can be used to construct all kinds of complex synchronization patterns and data structures

I mutual exclusion protocols, barriers, reductions, . . .

I state: a flag has two values, 0 and 1
I atomic operations

I raise
I can only be invoked when value is 0, otherwise error
I sets value to 1

I lower
I blocks until value is 1, then sets value to 0 in one atomic step
I no other thread can perform any operation on flag between check that value is 1 and set to 0

S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Application: concurrency flags

I a flag is a boolean variable
I a concurrency flag is a shared boolean variable used in a particular disciplined way

I also known as a “binary semaphore”

I concurrency flags are basic concurrency building blocks

I can be used to construct all kinds of complex synchronization patterns and data structures
I mutual exclusion protocols, barriers, reductions, . . .

I state: a flag has two values, 0 and 1
I atomic operations

I raise
I can only be invoked when value is 0, otherwise error
I sets value to 1

I lower
I blocks until value is 1, then sets value to 0 in one atomic step
I no other thread can perform any operation on flag between check that value is 1 and set to 0

S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Application: concurrency flags

I a flag is a boolean variable
I a concurrency flag is a shared boolean variable used in a particular disciplined way

I also known as a “binary semaphore”

I concurrency flags are basic concurrency building blocks
I can be used to construct all kinds of complex synchronization patterns and data structures

I mutual exclusion protocols, barriers, reductions, . . .

I state: a flag has two values, 0 and 1
I atomic operations

I raise
I can only be invoked when value is 0, otherwise error
I sets value to 1

I lower
I blocks until value is 1, then sets value to 0 in one atomic step
I no other thread can perform any operation on flag between check that value is 1 and set to 0

S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Application: concurrency flags

I a flag is a boolean variable
I a concurrency flag is a shared boolean variable used in a particular disciplined way

I also known as a “binary semaphore”

I concurrency flags are basic concurrency building blocks
I can be used to construct all kinds of complex synchronization patterns and data structures

I mutual exclusion protocols, barriers, reductions, . . .

I state: a flag has two values, 0 and 1

I atomic operations
I raise

I can only be invoked when value is 0, otherwise error
I sets value to 1

I lower
I blocks until value is 1, then sets value to 0 in one atomic step
I no other thread can perform any operation on flag between check that value is 1 and set to 0

S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Application: concurrency flags

I a flag is a boolean variable
I a concurrency flag is a shared boolean variable used in a particular disciplined way

I also known as a “binary semaphore”

I concurrency flags are basic concurrency building blocks
I can be used to construct all kinds of complex synchronization patterns and data structures

I mutual exclusion protocols, barriers, reductions, . . .

I state: a flag has two values, 0 and 1
I atomic operations

I raise
I can only be invoked when value is 0, otherwise error
I sets value to 1

I lower
I blocks until value is 1, then sets value to 0 in one atomic step
I no other thread can perform any operation on flag between check that value is 1 and set to 0

S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Application: concurrency flags

I a flag is a boolean variable
I a concurrency flag is a shared boolean variable used in a particular disciplined way

I also known as a “binary semaphore”

I concurrency flags are basic concurrency building blocks
I can be used to construct all kinds of complex synchronization patterns and data structures

I mutual exclusion protocols, barriers, reductions, . . .

I state: a flag has two values, 0 and 1
I atomic operations

I raise
I can only be invoked when value is 0, otherwise error
I sets value to 1

I lower
I blocks until value is 1, then sets value to 0 in one atomic step
I no other thread can perform any operation on flag between check that value is 1 and set to 0

S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Application: concurrency flags

I a flag is a boolean variable
I a concurrency flag is a shared boolean variable used in a particular disciplined way

I also known as a “binary semaphore”

I concurrency flags are basic concurrency building blocks
I can be used to construct all kinds of complex synchronization patterns and data structures

I mutual exclusion protocols, barriers, reductions, . . .

I state: a flag has two values, 0 and 1
I atomic operations

I raise
I can only be invoked when value is 0, otherwise error
I sets value to 1

I lower
I blocks until value is 1, then sets value to 0 in one atomic step
I no other thread can perform any operation on flag between check that value is 1 and set to 0

S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Interface for flags: flag.h

typedef ... flag_t;

/* Initializes the flag with the given value. Must be called before

the first time the flag is used. */

void flag_init(flag_t * f, _Bool val);

/* Destroys the flag */

void flag_destroy(flag_t * f);

/* Increments f atomically, and returns the result. Notifies threads

waiting for a change on f. An assertion is violated if f is 1 when

this function is called. */

void flag_raise(flag_t * f);

/* Waits for f to be 1, then sets it to 0, all atomically. */

void flag_lower(flag_t * f);

S.F. Siegel � CISC 372: Parallel Computing � Threads 12



Implementation of flags: flags.h and flags.c

typedef struct flag {

_Bool val;

pthread_mutex_t mutex;

pthread_cond_t condition_var;

} flag_t;

void flag_init(flag_t * f, _Bool val) {

f->val = val;

pthread_mutex_init(&f->mutex, NULL);

pthread_cond_init(&f->condition_var, NULL);

}

void flag_destroy(flag_t * f) {

pthread_mutex_destroy(&f->mutex);

pthread_cond_destroy(&f->condition_var);

}

S.F. Siegel � CISC 372: Parallel Computing � Threads 13



Implementation of flags: raise and lower

void flag_raise(flag_t * f) {

pthread_mutex_lock(&f->mutex);

assert(!f->val);

f->val = 1;

pthread_cond_broadcast(&f->condition_var);

pthread_mutex_unlock(&f->mutex);

}

void flag_lower(flag_t * f) {

pthread_mutex_lock(&f->mutex);

while (f->val == 0)

pthread_cond_wait(&f->condition_var, &f->mutex);

f->val = 0;

pthread_mutex_unlock(&f->mutex);

}

S.F. Siegel � CISC 372: Parallel Computing � Threads 14



Application of flags: barrier implementations

A very common pattern in multi-threaded programs:

while (true) {

compute something;

barrier();

}

I barrier(): no thread can leave until every thread has entered

I thread 1 needs to read something produced by thread 2 in previous iteration

I how to construct a “barrier” for threads?

I many ways, using synchronization primitives we have already learned

I solutions differ in their performance charactertistics
I desired characteristics of barriers:

1. no one leaves until everyone enters
2. no unnecessary delay: after last thread enters, everyone can leave without further delay
3. reuseable : need to use the same barrier object over and over

S.F. Siegel � CISC 372: Parallel Computing � Threads 15



Application of flags: barrier implementations

A very common pattern in multi-threaded programs:

while (true) {

compute something;

barrier();

}

I barrier(): no thread can leave until every thread has entered

I thread 1 needs to read something produced by thread 2 in previous iteration

I how to construct a “barrier” for threads?

I many ways, using synchronization primitives we have already learned

I solutions differ in their performance charactertistics
I desired characteristics of barriers:

1. no one leaves until everyone enters
2. no unnecessary delay: after last thread enters, everyone can leave without further delay
3. reuseable : need to use the same barrier object over and over

S.F. Siegel � CISC 372: Parallel Computing � Threads 15



Application of flags: barrier implementations

A very common pattern in multi-threaded programs:

while (true) {

compute something;

barrier();

}

I barrier(): no thread can leave until every thread has entered

I thread 1 needs to read something produced by thread 2 in previous iteration

I how to construct a “barrier” for threads?

I many ways, using synchronization primitives we have already learned

I solutions differ in their performance charactertistics
I desired characteristics of barriers:

1. no one leaves until everyone enters
2. no unnecessary delay: after last thread enters, everyone can leave without further delay
3. reuseable : need to use the same barrier object over and over

S.F. Siegel � CISC 372: Parallel Computing � Threads 15



Application of flags: barrier implementations

A very common pattern in multi-threaded programs:

while (true) {

compute something;

barrier();

}

I barrier(): no thread can leave until every thread has entered

I thread 1 needs to read something produced by thread 2 in previous iteration

I how to construct a “barrier” for threads?

I many ways, using synchronization primitives we have already learned

I solutions differ in their performance charactertistics
I desired characteristics of barriers:

1. no one leaves until everyone enters
2. no unnecessary delay: after last thread enters, everyone can leave without further delay
3. reuseable : need to use the same barrier object over and over

S.F. Siegel � CISC 372: Parallel Computing � Threads 15



Application of flags: barrier implementations

A very common pattern in multi-threaded programs:

while (true) {

compute something;

barrier();

}

I barrier(): no thread can leave until every thread has entered

I thread 1 needs to read something produced by thread 2 in previous iteration

I how to construct a “barrier” for threads?

I many ways, using synchronization primitives we have already learned

I solutions differ in their performance charactertistics
I desired characteristics of barriers:

1. no one leaves until everyone enters
2. no unnecessary delay: after last thread enters, everyone can leave without further delay
3. reuseable : need to use the same barrier object over and over

S.F. Siegel � CISC 372: Parallel Computing � Threads 15



Application of flags: barrier implementations

A very common pattern in multi-threaded programs:

while (true) {

compute something;

barrier();

}

I barrier(): no thread can leave until every thread has entered

I thread 1 needs to read something produced by thread 2 in previous iteration

I how to construct a “barrier” for threads?

I many ways, using synchronization primitives we have already learned

I solutions differ in their performance charactertistics
I desired characteristics of barriers:

1. no one leaves until everyone enters
2. no unnecessary delay: after last thread enters, everyone can leave without further delay
3. reuseable : need to use the same barrier object over and over

S.F. Siegel � CISC 372: Parallel Computing � Threads 15



Application of flags: barrier implementations

A very common pattern in multi-threaded programs:

while (true) {

compute something;

barrier();

}

I barrier(): no thread can leave until every thread has entered

I thread 1 needs to read something produced by thread 2 in previous iteration

I how to construct a “barrier” for threads?

I many ways, using synchronization primitives we have already learned

I solutions differ in their performance charactertistics

I desired characteristics of barriers:

1. no one leaves until everyone enters
2. no unnecessary delay: after last thread enters, everyone can leave without further delay
3. reuseable : need to use the same barrier object over and over

S.F. Siegel � CISC 372: Parallel Computing � Threads 15



Application of flags: barrier implementations

A very common pattern in multi-threaded programs:

while (true) {

compute something;

barrier();

}

I barrier(): no thread can leave until every thread has entered

I thread 1 needs to read something produced by thread 2 in previous iteration

I how to construct a “barrier” for threads?

I many ways, using synchronization primitives we have already learned

I solutions differ in their performance charactertistics
I desired characteristics of barriers:

1. no one leaves until everyone enters
2. no unnecessary delay: after last thread enters, everyone can leave without further delay
3. reuseable : need to use the same barrier object over and over

S.F. Siegel � CISC 372: Parallel Computing � Threads 15



A 2-thread barrier using flags

I two flags are used f1 and f2
I f1 is used by Thread 1 to send a signal to Thread 2 saying “I have arrived at barrier”
I f2 is used by Thread 2 to send a signal to Thread 1 saying “I have arrived at barrier”

I Thread 1

1. raises f1

2. lowers f2

I Thread 2

1. lowers f1

2. raises f2

Is it a correct, re-useable barrier with no unnecessary delay?
See 2barrier.c.

S.F. Siegel � CISC 372: Parallel Computing � Threads 16



A 2-thread barrier using flags

I two flags are used f1 and f2
I f1 is used by Thread 1 to send a signal to Thread 2 saying “I have arrived at barrier”
I f2 is used by Thread 2 to send a signal to Thread 1 saying “I have arrived at barrier”

I Thread 1

1. raises f1

2. lowers f2

I Thread 2

1. lowers f1

2. raises f2

Is it a correct, re-useable barrier with no unnecessary delay?
See 2barrier.c.

S.F. Siegel � CISC 372: Parallel Computing � Threads 16



A 2-thread barrier using flags

I two flags are used f1 and f2
I f1 is used by Thread 1 to send a signal to Thread 2 saying “I have arrived at barrier”
I f2 is used by Thread 2 to send a signal to Thread 1 saying “I have arrived at barrier”

I Thread 1

1. raises f1

2. lowers f2

I Thread 2

1. lowers f1

2. raises f2

Is it a correct, re-useable barrier with no unnecessary delay?
See 2barrier.c.

S.F. Siegel � CISC 372: Parallel Computing � Threads 16


