
CISC 372: Parallel Computing
Threads, part 4: barrier and reduction implementations

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware



Barrier implementations

Last lecture, we saw a simple two-thread barrier.

I two flags are used: f1 and f2
I f1 is used by Thread 1 to send a signal to Thread 2 saying “I have arrived at barrier”
I f2 is used by Thread 2 to send a signal to Thread 1 saying “I have arrived at barrier”

I Thread 1

1. raises f1

2. lowers f2

I Thread 2

1. lowers f1

2. raises f2

Now let’s generalize. . .

S.F. Siegel � CISC 372: Parallel Computing � Threads 2



Barrier implementations

Last lecture, we saw a simple two-thread barrier.
I two flags are used: f1 and f2

I f1 is used by Thread 1 to send a signal to Thread 2 saying “I have arrived at barrier”
I f2 is used by Thread 2 to send a signal to Thread 1 saying “I have arrived at barrier”

I Thread 1

1. raises f1

2. lowers f2

I Thread 2

1. lowers f1

2. raises f2

Now let’s generalize. . .

S.F. Siegel � CISC 372: Parallel Computing � Threads 2



Barrier implementations

Last lecture, we saw a simple two-thread barrier.
I two flags are used: f1 and f2

I f1 is used by Thread 1 to send a signal to Thread 2 saying “I have arrived at barrier”
I f2 is used by Thread 2 to send a signal to Thread 1 saying “I have arrived at barrier”

I Thread 1

1. raises f1

2. lowers f2

I Thread 2

1. lowers f1

2. raises f2

Now let’s generalize. . .

S.F. Siegel � CISC 372: Parallel Computing � Threads 2



Barrier implementations

Last lecture, we saw a simple two-thread barrier.
I two flags are used: f1 and f2

I f1 is used by Thread 1 to send a signal to Thread 2 saying “I have arrived at barrier”
I f2 is used by Thread 2 to send a signal to Thread 1 saying “I have arrived at barrier”

I Thread 1

1. raises f1

2. lowers f2

I Thread 2

1. lowers f1

2. raises f2

Now let’s generalize. . .

S.F. Siegel � CISC 372: Parallel Computing � Threads 2



A counter barrier

I a shared counter keeps track of number of threads in barrier

I last thread to enter resets counter and signals all other threads to depart

I one flag for each thread is used to transmit the departure signal

I see flag_barrier.c

Analysis

I (+) only 1 flag per thread

I (-) contention on shared variable counter (and its lock)

I (-) O(n) due to last thread’s protocol

S.F. Siegel � CISC 372: Parallel Computing � Threads 3



A counter barrier

I a shared counter keeps track of number of threads in barrier

I last thread to enter resets counter and signals all other threads to depart

I one flag for each thread is used to transmit the departure signal

I see flag_barrier.c

Analysis

I (+) only 1 flag per thread

I (-) contention on shared variable counter (and its lock)

I (-) O(n) due to last thread’s protocol

S.F. Siegel � CISC 372: Parallel Computing � Threads 3



A counter barrier

I a shared counter keeps track of number of threads in barrier

I last thread to enter resets counter and signals all other threads to depart

I one flag for each thread is used to transmit the departure signal

I see flag_barrier.c

Analysis

I (+) only 1 flag per thread

I (-) contention on shared variable counter (and its lock)

I (-) O(n) due to last thread’s protocol

S.F. Siegel � CISC 372: Parallel Computing � Threads 3



A counter barrier

I a shared counter keeps track of number of threads in barrier

I last thread to enter resets counter and signals all other threads to depart

I one flag for each thread is used to transmit the departure signal

I see flag_barrier.c

Analysis

I (+) only 1 flag per thread

I (-) contention on shared variable counter (and its lock)

I (-) O(n) due to last thread’s protocol

S.F. Siegel � CISC 372: Parallel Computing � Threads 3



A counter barrier

I a shared counter keeps track of number of threads in barrier

I last thread to enter resets counter and signals all other threads to depart

I one flag for each thread is used to transmit the departure signal

I see flag_barrier.c

Analysis

I (+) only 1 flag per thread

I (-) contention on shared variable counter (and its lock)

I (-) O(n) due to last thread’s protocol

S.F. Siegel � CISC 372: Parallel Computing � Threads 3



A counter barrier

I a shared counter keeps track of number of threads in barrier

I last thread to enter resets counter and signals all other threads to depart

I one flag for each thread is used to transmit the departure signal

I see flag_barrier.c

Analysis

I (+) only 1 flag per thread

I (-) contention on shared variable counter (and its lock)

I (-) O(n) due to last thread’s protocol

S.F. Siegel � CISC 372: Parallel Computing � Threads 3



A coordinator barrier

I use an additional “coordinator” thread
I a special thread that is not part of the “team”
I it keeps track of who is in the barrier
I the n regular threads are “workers”

I use two flags for each worker

1. for worker to signal coordinator it has arrived
2. for coordinator to signal worker it may leave

I worker barrier protocol

1. worker signals coordinator “I have arrived”
2. worker waits for departure signal from coordinator and lowers flag

I coordinator protocol
1. loop over workers:

I wait for and lower arrival flag for each

2. loop over workers:
I send departure signal to each

I see coordinator_barrier.c

S.F. Siegel � CISC 372: Parallel Computing � Threads 4



A coordinator barrier

I use an additional “coordinator” thread
I a special thread that is not part of the “team”
I it keeps track of who is in the barrier
I the n regular threads are “workers”

I use two flags for each worker

1. for worker to signal coordinator it has arrived
2. for coordinator to signal worker it may leave

I worker barrier protocol

1. worker signals coordinator “I have arrived”
2. worker waits for departure signal from coordinator and lowers flag

I coordinator protocol
1. loop over workers:

I wait for and lower arrival flag for each

2. loop over workers:
I send departure signal to each

I see coordinator_barrier.c

S.F. Siegel � CISC 372: Parallel Computing � Threads 4



A coordinator barrier

I use an additional “coordinator” thread
I a special thread that is not part of the “team”
I it keeps track of who is in the barrier
I the n regular threads are “workers”

I use two flags for each worker

1. for worker to signal coordinator it has arrived
2. for coordinator to signal worker it may leave

I worker barrier protocol

1. worker signals coordinator “I have arrived”
2. worker waits for departure signal from coordinator and lowers flag

I coordinator protocol
1. loop over workers:

I wait for and lower arrival flag for each

2. loop over workers:
I send departure signal to each

I see coordinator_barrier.c

S.F. Siegel � CISC 372: Parallel Computing � Threads 4



A coordinator barrier

I use an additional “coordinator” thread
I a special thread that is not part of the “team”
I it keeps track of who is in the barrier
I the n regular threads are “workers”

I use two flags for each worker

1. for worker to signal coordinator it has arrived
2. for coordinator to signal worker it may leave

I worker barrier protocol

1. worker signals coordinator “I have arrived”
2. worker waits for departure signal from coordinator and lowers flag

I coordinator protocol
1. loop over workers:

I wait for and lower arrival flag for each

2. loop over workers:
I send departure signal to each

I see coordinator_barrier.c

S.F. Siegel � CISC 372: Parallel Computing � Threads 4



A coordinator barrier

I use an additional “coordinator” thread
I a special thread that is not part of the “team”
I it keeps track of who is in the barrier
I the n regular threads are “workers”

I use two flags for each worker

1. for worker to signal coordinator it has arrived
2. for coordinator to signal worker it may leave

I worker barrier protocol

1. worker signals coordinator “I have arrived”
2. worker waits for departure signal from coordinator and lowers flag

I coordinator protocol
1. loop over workers:

I wait for and lower arrival flag for each

2. loop over workers:
I send departure signal to each

I see coordinator_barrier.c

S.F. Siegel � CISC 372: Parallel Computing � Threads 4



A coordinator barrier

I use an additional “coordinator” thread
I a special thread that is not part of the “team”
I it keeps track of who is in the barrier
I the n regular threads are “workers”

I use two flags for each worker

1. for worker to signal coordinator it has arrived
2. for coordinator to signal worker it may leave

I worker barrier protocol

1. worker signals coordinator “I have arrived”
2. worker waits for departure signal from coordinator and lowers flag

I coordinator protocol
1. loop over workers:

I wait for and lower arrival flag for each

2. loop over workers:
I send departure signal to each

I see coordinator_barrier.c
S.F. Siegel � CISC 372: Parallel Computing � Threads 4



Analysis of coordinator barrier

I (+) avoids memory contention

I (-) requires an extra thread
I (-) O(n): execution time is proportional to n

I what if n = 106?

S.F. Siegel � CISC 372: Parallel Computing � Threads 5



Combining binary tree barrier

I combines actions of worker and coordinator
I so each worker also coordinates

I organizes workers in tree
I exeuction time proportional to log(n)

I flow of signals
I send arrive signals up the tree
I send depart signals down the tree

I sequence of events
I worker waits for all children to arrive
I then tells parent it has arrived
I when root learns that its children have arrived
I it knows all procs have arrived
I then root tells its children to depart
I when a worker is told to depart, it tells its

children to depart, . . .

1

2 3

4

5

6 7

8

0

1

2 3

4

5

6 7

8

0

S.F. Siegel � CISC 372: Parallel Computing � Threads 6



Combining binary tree barrier

I combines actions of worker and coordinator
I so each worker also coordinates

I organizes workers in tree
I exeuction time proportional to log(n)

I flow of signals
I send arrive signals up the tree
I send depart signals down the tree

I sequence of events
I worker waits for all children to arrive
I then tells parent it has arrived
I when root learns that its children have arrived
I it knows all procs have arrived
I then root tells its children to depart
I when a worker is told to depart, it tells its

children to depart, . . .

1

2 3

4

5

6 7

8

0

1

2 3

4

5

6 7

8

0

S.F. Siegel � CISC 372: Parallel Computing � Threads 6



Combining binary tree barrier

I combines actions of worker and coordinator
I so each worker also coordinates

I organizes workers in tree
I exeuction time proportional to log(n)

I flow of signals
I send arrive signals up the tree
I send depart signals down the tree

I sequence of events
I worker waits for all children to arrive
I then tells parent it has arrived
I when root learns that its children have arrived
I it knows all procs have arrived
I then root tells its children to depart
I when a worker is told to depart, it tells its

children to depart, . . .

1

2 3

4

5

6 7

8

0

1

2 3

4

5

6 7

8

0

S.F. Siegel � CISC 372: Parallel Computing � Threads 6



Combining binary tree barrier

I combines actions of worker and coordinator
I so each worker also coordinates

I organizes workers in tree
I exeuction time proportional to log(n)

I flow of signals
I send arrive signals up the tree
I send depart signals down the tree

I sequence of events
I worker waits for all children to arrive
I then tells parent it has arrived
I when root learns that its children have arrived
I it knows all procs have arrived
I then root tells its children to depart
I when a worker is told to depart, it tells its

children to depart, . . .

1

2 3

4

5

6 7

8

0

1

2 3

4

5

6 7

8

0

S.F. Siegel � CISC 372: Parallel Computing � Threads 6



Combining binary tree barrier: tree_barrier.c

I protocol for leaf node L

1. raise arrive[L]
2. lower depart[L]

I protocol for interior node I

1. lower arrive[left]
2. lower arrive[right]
3. raise arrive[I ]
4. lower depart[I ]
5. raise depart[left]
6. raise depart[right]

I protocol for root node R

1. lower arrive[left]
2. lower arrive[right]
3. raise depart[left]
4. raise depart[right]

1

2 3

4

5

6 7

8

0

1

2 3

4

5

6 7

8

0

S.F. Siegel � CISC 372: Parallel Computing � Threads 7



Combining binary tree barrier: tree_barrier.c

I protocol for leaf node L

1. raise arrive[L]
2. lower depart[L]

I protocol for interior node I

1. lower arrive[left]
2. lower arrive[right]
3. raise arrive[I ]
4. lower depart[I ]
5. raise depart[left]
6. raise depart[right]

I protocol for root node R

1. lower arrive[left]
2. lower arrive[right]
3. raise depart[left]
4. raise depart[right]

1

2 3

4

5

6 7

8

0

1

2 3

4

5

6 7

8

0

S.F. Siegel � CISC 372: Parallel Computing � Threads 7



Analysis of combining tree barrier

I time is O(log(n))
I no loops 1..n
I each row in the tree can execute in parallel

I different procs execute different code
I leaf and root execute fewer instructions

I could lead to inefficiency

I increases complexity

S.F. Siegel � CISC 372: Parallel Computing � Threads 8



Symmetric barriers

I in symmetric barriers
I all procs execute same code

I common structure: solutions are constructed from pairs of 2-process barriers
I Thread 1

1. raises f1

2. lowers f2

I Thread 2

1. lowers f1

2. raises f2

S.F. Siegel � CISC 372: Parallel Computing � Threads 9



Symmetric barriers

I in symmetric barriers
I all procs execute same code

I common structure: solutions are constructed from pairs of 2-process barriers
I Thread 1

1. raises f1

2. lowers f2

I Thread 2

1. lowers f1

2. raises f2

S.F. Siegel � CISC 372: Parallel Computing � Threads 9



Symmetric barriers

I in symmetric barriers
I all procs execute same code

I common structure: solutions are constructed from pairs of 2-process barriers
I Thread 1

1. raises f1

2. lowers f2

I Thread 2

1. lowers f1

2. raises f2

S.F. Siegel � CISC 372: Parallel Computing � Threads 9



Symmetric barriers

I need to choose interconnection scheme
I sequence of 2-process barriers executed by each proc

I Example: butterfly barrier
I assume n = 2s is a power of 2

1 2 3 4 5 6 7 8
stage 1
stage 2

stage 3

I butterfly: O(log(n)) time and symmetric

I requires n to be power of 2

S.F. Siegel � CISC 372: Parallel Computing � Threads 10



Symmetric barriers

I need to choose interconnection scheme
I sequence of 2-process barriers executed by each proc

I Example: butterfly barrier
I assume n = 2s is a power of 2

1 2 3 4 5 6 7 8
stage 1
stage 2

stage 3

I butterfly: O(log(n)) time and symmetric

I requires n to be power of 2

S.F. Siegel � CISC 372: Parallel Computing � Threads 10



Symmetric barriers

I need to choose interconnection scheme
I sequence of 2-process barriers executed by each proc

I Example: butterfly barrier
I assume n = 2s is a power of 2

1 2 3 4 5 6 7 8
stage 1
stage 2

stage 3

I butterfly: O(log(n)) time and symmetric

I requires n to be power of 2
S.F. Siegel � CISC 372: Parallel Computing � Threads 10



Dissemination Barrier: dissem_barrier.c

I butterfly requires n to be power of 2 or have exceptional code which breaks symmetry
I dissemination barrier works for any n
I uses cyclic order of threads
I two flags (a and b) for each thread, in each stage
I in stage i each thread

I synchs with thread 2i to the right using a and b flags of that thread
I synchs with thread 2i to the left using its a and b flags

I stages: 0 ≤ i < dlog2 ne

0 1 2 3 4 5
stage 0
stage 1

stage 2

S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Dissemination Barrier: dissem_barrier.c

I butterfly requires n to be power of 2 or have exceptional code which breaks symmetry

I dissemination barrier works for any n
I uses cyclic order of threads
I two flags (a and b) for each thread, in each stage
I in stage i each thread

I synchs with thread 2i to the right using a and b flags of that thread
I synchs with thread 2i to the left using its a and b flags

I stages: 0 ≤ i < dlog2 ne

0 1 2 3 4 5
stage 0
stage 1

stage 2

S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Dissemination Barrier: dissem_barrier.c

I butterfly requires n to be power of 2 or have exceptional code which breaks symmetry
I dissemination barrier works for any n

I uses cyclic order of threads
I two flags (a and b) for each thread, in each stage
I in stage i each thread

I synchs with thread 2i to the right using a and b flags of that thread
I synchs with thread 2i to the left using its a and b flags

I stages: 0 ≤ i < dlog2 ne

0 1 2 3 4 5
stage 0
stage 1

stage 2

S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Dissemination Barrier: dissem_barrier.c

I butterfly requires n to be power of 2 or have exceptional code which breaks symmetry
I dissemination barrier works for any n
I uses cyclic order of threads

I two flags (a and b) for each thread, in each stage
I in stage i each thread

I synchs with thread 2i to the right using a and b flags of that thread
I synchs with thread 2i to the left using its a and b flags

I stages: 0 ≤ i < dlog2 ne

0 1 2 3 4 5
stage 0
stage 1

stage 2

S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Dissemination Barrier: dissem_barrier.c

I butterfly requires n to be power of 2 or have exceptional code which breaks symmetry
I dissemination barrier works for any n
I uses cyclic order of threads
I two flags (a and b) for each thread, in each stage

I in stage i each thread
I synchs with thread 2i to the right using a and b flags of that thread
I synchs with thread 2i to the left using its a and b flags

I stages: 0 ≤ i < dlog2 ne

0 1 2 3 4 5
stage 0
stage 1

stage 2

S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Dissemination Barrier: dissem_barrier.c

I butterfly requires n to be power of 2 or have exceptional code which breaks symmetry
I dissemination barrier works for any n
I uses cyclic order of threads
I two flags (a and b) for each thread, in each stage
I in stage i each thread

I synchs with thread 2i to the right using a and b flags of that thread
I synchs with thread 2i to the left using its a and b flags

I stages: 0 ≤ i < dlog2 ne

0 1 2 3 4 5
stage 0
stage 1

stage 2
S.F. Siegel � CISC 372: Parallel Computing � Threads 11



Dissemination barrier: code

for (int stage=0, i=1; stage<nstages; stage++, i*=2) {

flag_raise(&bs->a[stage][(tid+i)%nthreads]);

flag_lower(&bs->a[stage][tid]);

flag_raise(&bs->b[stage][tid]);

flag_lower(&bs->b[stage][(tid+i)%nthreads]);

}

S.F. Siegel � CISC 372: Parallel Computing � Threads 12



Reductions

I each barrier algorithm can be extended to a reduction algorithm
I for example, to sum elements of an array efficiently

I example: tree barrier
I each node has an associated value
I each node waits for arrival of its left and right child
I then sets its value to sum of the value of the children
I then alerts its parent, . . .
I root gets the global sum and can assign it to a global variable
I allows reduction without all threads contending for a single mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 13



Reductions

I each barrier algorithm can be extended to a reduction algorithm
I for example, to sum elements of an array efficiently

I example: tree barrier
I each node has an associated value
I each node waits for arrival of its left and right child
I then sets its value to sum of the value of the children
I then alerts its parent, . . .
I root gets the global sum and can assign it to a global variable
I allows reduction without all threads contending for a single mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 13



Reductions

I each barrier algorithm can be extended to a reduction algorithm
I for example, to sum elements of an array efficiently

I example: tree barrier

I each node has an associated value
I each node waits for arrival of its left and right child
I then sets its value to sum of the value of the children
I then alerts its parent, . . .
I root gets the global sum and can assign it to a global variable
I allows reduction without all threads contending for a single mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 13



Reductions

I each barrier algorithm can be extended to a reduction algorithm
I for example, to sum elements of an array efficiently

I example: tree barrier
I each node has an associated value

I each node waits for arrival of its left and right child
I then sets its value to sum of the value of the children
I then alerts its parent, . . .
I root gets the global sum and can assign it to a global variable
I allows reduction without all threads contending for a single mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 13



Reductions

I each barrier algorithm can be extended to a reduction algorithm
I for example, to sum elements of an array efficiently

I example: tree barrier
I each node has an associated value
I each node waits for arrival of its left and right child

I then sets its value to sum of the value of the children
I then alerts its parent, . . .
I root gets the global sum and can assign it to a global variable
I allows reduction without all threads contending for a single mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 13



Reductions

I each barrier algorithm can be extended to a reduction algorithm
I for example, to sum elements of an array efficiently

I example: tree barrier
I each node has an associated value
I each node waits for arrival of its left and right child
I then sets its value to sum of the value of the children

I then alerts its parent, . . .
I root gets the global sum and can assign it to a global variable
I allows reduction without all threads contending for a single mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 13



Reductions

I each barrier algorithm can be extended to a reduction algorithm
I for example, to sum elements of an array efficiently

I example: tree barrier
I each node has an associated value
I each node waits for arrival of its left and right child
I then sets its value to sum of the value of the children
I then alerts its parent, . . .

I root gets the global sum and can assign it to a global variable
I allows reduction without all threads contending for a single mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 13



Reductions

I each barrier algorithm can be extended to a reduction algorithm
I for example, to sum elements of an array efficiently

I example: tree barrier
I each node has an associated value
I each node waits for arrival of its left and right child
I then sets its value to sum of the value of the children
I then alerts its parent, . . .
I root gets the global sum and can assign it to a global variable

I allows reduction without all threads contending for a single mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 13



Reductions

I each barrier algorithm can be extended to a reduction algorithm
I for example, to sum elements of an array efficiently

I example: tree barrier
I each node has an associated value
I each node waits for arrival of its left and right child
I then sets its value to sum of the value of the children
I then alerts its parent, . . .
I root gets the global sum and can assign it to a global variable
I allows reduction without all threads contending for a single mutex

S.F. Siegel � CISC 372: Parallel Computing � Threads 13



pthread_barrier

I Pthreads provides a barrier
I but this is an optional feature
I not supported on all platforms (even those supporting Pthreads)
I for portable code: know how to write your own barrier

I pthread_barrier_t : type of a barrier object
I pthread_barrier_init(...)

I pthread_barrier_t *
I pointer to barrier object to initialize

I pthread_barrierattr_t *
I unsigned int count

I number of threads that will participate in this barrier

I pthread_barrier_destroy(pthread_barrier_t *)

I pthread_barrier_wait(pthread_barrier_t *)

S.F. Siegel � CISC 372: Parallel Computing � Threads 14



pthread_barrier

I Pthreads provides a barrier

I but this is an optional feature
I not supported on all platforms (even those supporting Pthreads)
I for portable code: know how to write your own barrier

I pthread_barrier_t : type of a barrier object
I pthread_barrier_init(...)

I pthread_barrier_t *
I pointer to barrier object to initialize

I pthread_barrierattr_t *
I unsigned int count

I number of threads that will participate in this barrier

I pthread_barrier_destroy(pthread_barrier_t *)

I pthread_barrier_wait(pthread_barrier_t *)

S.F. Siegel � CISC 372: Parallel Computing � Threads 14



pthread_barrier

I Pthreads provides a barrier
I but this is an optional feature

I not supported on all platforms (even those supporting Pthreads)
I for portable code: know how to write your own barrier

I pthread_barrier_t : type of a barrier object
I pthread_barrier_init(...)

I pthread_barrier_t *
I pointer to barrier object to initialize

I pthread_barrierattr_t *
I unsigned int count

I number of threads that will participate in this barrier

I pthread_barrier_destroy(pthread_barrier_t *)

I pthread_barrier_wait(pthread_barrier_t *)

S.F. Siegel � CISC 372: Parallel Computing � Threads 14



pthread_barrier

I Pthreads provides a barrier
I but this is an optional feature
I not supported on all platforms (even those supporting Pthreads)

I for portable code: know how to write your own barrier

I pthread_barrier_t : type of a barrier object
I pthread_barrier_init(...)

I pthread_barrier_t *
I pointer to barrier object to initialize

I pthread_barrierattr_t *
I unsigned int count

I number of threads that will participate in this barrier

I pthread_barrier_destroy(pthread_barrier_t *)

I pthread_barrier_wait(pthread_barrier_t *)

S.F. Siegel � CISC 372: Parallel Computing � Threads 14



pthread_barrier

I Pthreads provides a barrier
I but this is an optional feature
I not supported on all platforms (even those supporting Pthreads)
I for portable code: know how to write your own barrier

I pthread_barrier_t : type of a barrier object
I pthread_barrier_init(...)

I pthread_barrier_t *
I pointer to barrier object to initialize

I pthread_barrierattr_t *
I unsigned int count

I number of threads that will participate in this barrier

I pthread_barrier_destroy(pthread_barrier_t *)

I pthread_barrier_wait(pthread_barrier_t *)

S.F. Siegel � CISC 372: Parallel Computing � Threads 14


