CISC 372: Parallel Computing
Threads, part 4: barrier and reduction implementations

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

Barrier implementations

Last lecture, we saw a simple two-thread barrier.

S.F. Siegel o CISC 372: Parallel Computing < Threads 2

Barrier implementations

Last lecture, we saw a simple two-thread barrier.
» two flags are used: f1 and £2

> f1 is used by Thread 1 to send a signal to Thread 2 saying “l have arrived at barrier”
» £2 is used by Thread 2 to send a signal to Thread 1 saying “| have arrived at barrier”

S.F. Siegel < CISC 372: Parallel Computing < Threads 2

Barrier implementations

Last lecture, we saw a simple two-thread barrier.
» two flags are used: f1 and £2

> f1 is used by Thread 1 to send a signal to Thread 2 saying “l have arrived at barrier”
» £2 is used by Thread 2 to send a signal to Thread 1 saying “| have arrived at barrier”

» Thread 1

1. raises f1
2. lowers £2

» Thread 2

1. lowers f1
2. raises £2

S.F. Siegel < CISC 372: Parallel Computing < Threads 2

Barrier implementations

Last lecture, we saw a simple two-thread barrier.
» two flags are used: f1 and £2

> f1 is used by Thread 1 to send a signal to Thread 2 saying “l have arrived at barrier”
» £2 is used by Thread 2 to send a signal to Thread 1 saying “| have arrived at barrier”

» Thread 1

1. raises f1
2. lowers £2

» Thread 2

1. lowers f1
2. raises £2

Now let's generalize. . .

S.F. Siegel < CISC 372: Parallel Computing < Threads 2

S.F. Siegel

o

A counter barrier

CISC 372: Parallel Computing

<o

Threads

o >

A counter barrier

» a shared counter keeps track of number of threads in barrier

S.F. Siegel o CISC 372: Parallel Computing < Threads 3

A counter barrier

» a shared counter keeps track of number of threads in barrier

P last thread to enter resets counter and signals all other threads to depart

S.F. Siegel < CISC 372: Parallel Computing < Threads 3

A counter barrier

» a shared counter keeps track of number of threads in barrier
P last thread to enter resets counter and signals all other threads to depart

» one flag for each thread is used to transmit the departure signal

S.F. Siegel < CISC 372: Parallel Computing < Threads 3

A counter barrier

» a shared counter keeps track of number of threads in barrier
P last thread to enter resets counter and signals all other threads to depart
» one flag for each thread is used to transmit the departure signal

» see flag_barrier.c

S.F. Siegel < CISC 372: Parallel Computing < Threads 3

A counter barrier

» a shared counter keeps track of number of threads in barrier
P last thread to enter resets counter and signals all other threads to depart
» one flag for each thread is used to transmit the departure signal

P> see flag_barrier.c

Analysis
» (+) only 1 flag per thread
» (-) contention on shared variable counter (and its lock)
» (-) O(n) due to last thread's protocol

S.F. Siegel < CISC 372: Parallel Computing < Threads 3

A coordinator barrier

S.F. Siegel o CISC 372: Parallel Computing <o Threads

A coordinator barrier

» use an additional “coordinator” thread

» a special thread that is not part of the “team”
» it keeps track of who is in the barrier
» the n regular threads are “workers”

S.F. Siegel o CISC 372: Parallel Computing < Threads 4

A coordinator barrier

» use an additional “coordinator” thread
» a special thread that is not part of the “team’
» it keeps track of who is in the barrier
» the n regular threads are “workers”

» use two flags for each worker
1. for worker to signal coordinator it has arrived
2. for coordinator to signal worker it may leave

S.F. Siegel < CISC 372: Parallel Computing < Threads

A coordinator barrier

» use an additional “coordinator” thread
» a special thread that is not part of the “team”
» it keeps track of who is in the barrier
» the n regular threads are “workers”
» use two flags for each worker
1. for worker to signal coordinator it has arrived
2. for coordinator to signal worker it may leave
» worker barrier protocol

1. worker signals coordinator “l have arrived"”
2. worker waits for departure signal from coordinator and lowers flag

S.F. Siegel < CISC 372: Parallel Computing < Threads 4

A coordinator barrier

» use an additional “coordinator” thread
» a special thread that is not part of the “team”
» it keeps track of who is in the barrier
» the n regular threads are “workers”
» use two flags for each worker
1. for worker to signal coordinator it has arrived
2. for coordinator to signal worker it may leave
» worker barrier protocol
1. worker signals coordinator “l have arrived"”
2. worker waits for departure signal from coordinator and lowers flag
» coordinator protocol
1. loop over workers:
» wait for and lower arrival flag for each
2. loop over workers:
> send departure signal to each

S.F. Siegel < CISC 372: Parallel Computing < Threads 4

A coordinator barrier

» use an additional “coordinator” thread
» a special thread that is not part of the “team”
» it keeps track of who is in the barrier
» the n regular threads are “workers”
» use two flags for each worker
1. for worker to signal coordinator it has arrived
2. for coordinator to signal worker it may leave
» worker barrier protocol
1. worker signals coordinator “l have arrived"”
2. worker waits for departure signal from coordinator and lowers flag
» coordinator protocol
1. loop over workers:
» wait for and lower arrival flag for each
2. loop over workers:
> send departure signal to each

» see coordinator_barrier.c
S.F. Siegel < CISC 372: Paraliel Computing < Threads 4

Analysis of coordinator barrier

» (+4) avoids memory contention

» (-) requires an extra thread

» (-) O(n): execution time is proportional to n
> what if n = 10°7?

S.F. Siegel o CISC 372: Parallel Computing < Threads 5

Combining binary tree barrier

S.F. Siegel o CISC 372: Parallel Computing <o Threads

Combining binary tree barrier

» combines actions of worker and coordinator
» so each worker also coordinates

S.F. Siegel o CISC 372: Parallel Computing < Threads 6

Combining binary tree barrier

» combines actions of worker and coordinator
» so each worker also coordinates

» organizes workers in tree
> exeuction time proportional to log(n)

S.F. Siegel o CISC 372: Parallel Computing < Threads 6

Combining binary tree barrier

» combines actions of worker and coordinator
» so each worker also coordinates

» organizes workers in tree
> exeuction time proportional to log(n)

» flow of signals

» send arrive signals up the tree
» send depart signals down the tree

> sequence of events

» worker waits for all children to arrive

then tells parent it has arrived

when root learns that its children have arrived
it knows all procs have arrived

then root tells its children to depart

when a worker is told to depart, it tells its
children to depart, ...

vvyvyyVvyy

S.F. Siegel CISC 372: Parallel Computing < Threads 6

Combining binary tree barrier: tree_barrier.c

S.F. Siegel o CISC 372: Parallel Computing <o Threads 7

Combining binary tree barrier: tree_barrier.c

» protocol for leaf node L

1.
2.

raise arrivel[L]
lower depart|[L]

» protocol for interior node /

1.

o

6.

lower arrivelleft]
lower arrive|[right]
raise arrivel[/]
lower depart]/]
raise depart|left]
raise depart[right]

» protocol for root node R

S.F. Siegel

1.

2.
3.
4.

lower arrivel[left]
lower arrive[right]
raise depart[left]
raise depart[right]

CISC 372: Parallel Computing

<

Threads 7

Analysis of combining tree barrier

» time is O(log(n))
» no loops 1..n
» each row in the tree can execute in parallel

» different procs execute different code
» leaf and root execute fewer instructions
> could lead to inefficiency

» increases complexity

S.F. Siegel o CISC 372: Parallel Computing < Threads 8

Symmetric barriers

S.F. Siegel 3

CISC 372: Parallel Computing

<o Threads

Symmetric barriers

» in symmetric barriers
» all procs execute same code

S.F. Siegel o CISC 372: Parallel Computing o Threads

Symmetric barriers

» in symmetric barriers
» all procs execute same code

» common structure: solutions are constructed from pairs of 2-process barriers
» Thread 1

1. raises f1
2. lowers £2

» Thread 2

1. lowers f1
2. raises f2

S.F. Siegel o CISC 372: Parallel Computing < Threads 9

Symmetric barriers

» need to choose interconnection scheme
P> sequence of 2-process barriers executed by each proc

S.F. Siegel o CISC 372: Parallel Computing <o Threads 10

Symmetric barriers

» need to choose interconnection scheme

P> sequence of 2-process barriers executed by each proc
» Example: butterfly barrier

P assume n = 2° is a power of 2

12 3 45

6

stage 1 L | L | L |

stage2 ——F E—
L |

stage 3 ' '

S.F. Siegel o CISC 372: Parallel Computing <o Threads 10

Symmetric barriers

» need to choose interconnection scheme

P> sequence of 2-process barriers executed by each proc
» Example: butterfly barrier

P assume n = 2° is a power of 2

stage1 | .

stage2 ——F E—
L |

stage 3 '

» butterfly: O(log(n)) time and symmetric
» requires n to be power of 2

S.F. Siegel o CISC 372: Parallel Computing < Threads 10

Dissemination Barrier: dissem_barrier.c

S.F. Siegel o CISC 372: Parallel Computing o Threads 11

Dissemination Barrier: dissem_barrier.c

» butterfly requires n to be power of 2 or have exceptional code which breaks symmetry

S.F. Siegel o CISC 372: Parallel Computing < Threads 11

Dissemination Barrier: dissem_barrier.c

» butterfly requires n to be power of 2 or have exceptional code which breaks symmetry
» dissemination barrier works for any n

S.F. Siegel o CISC 372: Parallel Computing < Threads 11

Dissemination Barrier: dissem_barrier.c

» butterfly requires n to be power of 2 or have exceptional code which breaks symmetry
» dissemination barrier works for any n
» uses cyclic order of threads

S.F. Siegel o CISC 372: Parallel Computing < Threads 11

Dissemination Barrier: dissem_barrier.c

» butterfly requires n to be power of 2 or have exceptional code which breaks symmetry
» dissemination barrier works for any n

» uses cyclic order of threads

> two flags (a and b) for each thread, in each stage

S.F. Siegel < CISC 372: Parallel Computing < Threads 11

Dissemination Barrier: dissem_barrier.c

v

butterfly requires n to be power of 2 or have exceptional code which breaks symmetry
dissemination barrier works for any n

uses cyclic order of threads

two flags (a and b) for each thread, in each stage

in stage i each thread

» synchs with thread 2’: to the right using a and b flags of that thread
» synchs with thread 2' to the left using its a and b flags

> stages: 0 </ < [log, n]

vvyYyy

012 3 45

stage O

stage 1

stage 2

S.F. Siegel o CISC 372: Parallel Computing < Threads 11

Dissemination barrier: code

for (int stage=0, i=1; stage<nstages; stage++, i*=2) {
flag_raise(&bs->a[stage] [(tid+i)¥%nthreads]);
flag_lower (&bs->a[stage] [tid]);
flag_raise(&bs->b[stage] [tid]);
flag_lower (&bs->b[stage] [(tid+i)¥nthreads]);

S.F. Siegel o CISC 372: Parallel Computing < Threads 12

Reductions

S.F. Siegel o

CISC 372: Parallel Computing

<o Threads

13

Reductions

» each barrier algorithm can be extended to a reduction algorithm
» for example, to sum elements of an array efficiently

S.F. Siegel < CISC 372: Parallel Computing < Threads 13

Reductions

» each barrier algorithm can be extended to a reduction algorithm
» for example, to sum elements of an array efficiently

» example: tree barrier

S.F. Siegel < CISC 372: Parallel Computing < Threads 13

Reductions

» each barrier algorithm can be extended to a reduction algorithm
» for example, to sum elements of an array efficiently

» example: tree barrier
P each node has an associated value

S.F. Siegel < CISC 372: Parallel Computing < Threads 13

Reductions

» each barrier algorithm can be extended to a reduction algorithm
» for example, to sum elements of an array efficiently
» example: tree barrier

» each node has an associated value
P> each node waits for arrival of its left and right child

S.F. Siegel < CISC 372: Parallel Computing < Threads 13

Reductions

» each barrier algorithm can be extended to a reduction algorithm
» for example, to sum elements of an array efficiently
» example: tree barrier

» each node has an associated value
P> each node waits for arrival of its left and right child
» then sets its value to sum of the value of the children

S.F. Siegel < CISC 372: Parallel Computing < Threads 13

Reductions

» each barrier algorithm can be extended to a reduction algorithm
» for example, to sum elements of an array efficiently
» example: tree barrier

» each node has an associated value

P> each node waits for arrival of its left and right child
» then sets its value to sum of the value of the children
» then alerts its parent, ...

S.F. Siegel < CISC 372: Parallel Computing < Threads 13

Reductions

» each barrier algorithm can be extended to a reduction algorithm
» for example, to sum elements of an array efficiently

» example: tree barrier
P each node has an associated value

each node waits for arrival of its left and right child

then sets its value to sum of the value of the children

then alerts its parent, ...

root gets the global sum and can assign it to a global variable

vVvyvyy

S.F. Siegel < CISC 372: Parallel Computing < Threads 13

Reductions

» each barrier algorithm can be extended to a reduction algorithm

>

for example, to sum elements of an array efficiently

» example: tree barrier

>

vVvVvyyVvyy

S.F. Siegel

each node has an associated value

each node waits for arrival of its left and right child

then sets its value to sum of the value of the children

then alerts its parent, ...

root gets the global sum and can assign it to a global variable
allows reduction without all threads contending for a single mutex

CISC 372: Parallel Computing < Threads 13

pthread_barrier

S.F. Siegel

<&

CISC 372: Parallel Computing

o

Threads

14

pthread_barrier

» Pthreads provides a barrier

S.F. Siegel o CISC 372: Parallel Computing

<

Threads

14

pthread_barrier

» Pthreads provides a barrier

S.F. Siegel

» but this is an optional feature

o CISC 372: Parallel Computing <

Threads

14

pthread_barrier

» Pthreads provides a barrier

» but this is an optional feature
> not supported on all platforms (even those supporting Pthreads)

S.F. Siegel o CISC 372: Parallel Computing < Threads 14

pthread_barrier

» Pthreads provides a barrier
» but this is an optional feature
> not supported on all platforms (even those supporting Pthreads)
» for portable code: know how to write your own barrier
» pthread_barrier_t : type of a barrier object
» pthread_barrier_init(...)
» pthread_barrier_t *
> pointer to barrier object to initialize

> pthread_barrierattr_t *
> unsigned int count

» number of threads that will participate in this barrier
» pthread_barrier_destroy(pthread_barrier_t *)

» pthread_barrier_wait(pthread_barrier_t *)

S.F. Siegel < CISC 372: Parallel Computing < Threads 14

