
CISC 372: Parallel Computing
OpenMP

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware



OpenMP Overview

I an API for shared memory, multi-threaded programming

I works with C, C++, or Fortran
I emphasizes incremental parallelization

I start with the sequential program
I add a little bit of parallelism at a time
I see how it works, change it, add some more, . . .
I contrast with MPI “all or nothing” approach

I programmer inserts directives and function calls into sequential program
I in C, a directive is a pragma
I stands for pragmatic information
I a general way to pass additional information to the compiler in a form not supported by the C

language
I a compiler that does not recognize a kind of pragma can just ignore it
I #pragma omp ...

I the sequential program remains embedded in the OpenMP version
I just ignore the pragmas
I replace function calls with trivial implementations

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 2



OpenMP Overview

I an API for shared memory, multi-threaded programming

I works with C, C++, or Fortran
I emphasizes incremental parallelization

I start with the sequential program
I add a little bit of parallelism at a time
I see how it works, change it, add some more, . . .
I contrast with MPI “all or nothing” approach

I programmer inserts directives and function calls into sequential program
I in C, a directive is a pragma
I stands for pragmatic information
I a general way to pass additional information to the compiler in a form not supported by the C

language
I a compiler that does not recognize a kind of pragma can just ignore it
I #pragma omp ...

I the sequential program remains embedded in the OpenMP version
I just ignore the pragmas
I replace function calls with trivial implementations

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 2



OpenMP Overview

I an API for shared memory, multi-threaded programming

I works with C, C++, or Fortran

I emphasizes incremental parallelization
I start with the sequential program
I add a little bit of parallelism at a time
I see how it works, change it, add some more, . . .
I contrast with MPI “all or nothing” approach

I programmer inserts directives and function calls into sequential program
I in C, a directive is a pragma
I stands for pragmatic information
I a general way to pass additional information to the compiler in a form not supported by the C

language
I a compiler that does not recognize a kind of pragma can just ignore it
I #pragma omp ...

I the sequential program remains embedded in the OpenMP version
I just ignore the pragmas
I replace function calls with trivial implementations

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 2



OpenMP Overview

I an API for shared memory, multi-threaded programming

I works with C, C++, or Fortran
I emphasizes incremental parallelization

I start with the sequential program
I add a little bit of parallelism at a time
I see how it works, change it, add some more, . . .
I contrast with MPI “all or nothing” approach

I programmer inserts directives and function calls into sequential program
I in C, a directive is a pragma
I stands for pragmatic information
I a general way to pass additional information to the compiler in a form not supported by the C

language
I a compiler that does not recognize a kind of pragma can just ignore it
I #pragma omp ...

I the sequential program remains embedded in the OpenMP version
I just ignore the pragmas
I replace function calls with trivial implementations

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 2



OpenMP Overview

I an API for shared memory, multi-threaded programming

I works with C, C++, or Fortran
I emphasizes incremental parallelization

I start with the sequential program
I add a little bit of parallelism at a time
I see how it works, change it, add some more, . . .
I contrast with MPI “all or nothing” approach

I programmer inserts directives and function calls into sequential program
I in C, a directive is a pragma
I stands for pragmatic information
I a general way to pass additional information to the compiler in a form not supported by the C

language
I a compiler that does not recognize a kind of pragma can just ignore it
I #pragma omp ...

I the sequential program remains embedded in the OpenMP version
I just ignore the pragmas
I replace function calls with trivial implementations

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 2



OpenMP Overview

I an API for shared memory, multi-threaded programming

I works with C, C++, or Fortran
I emphasizes incremental parallelization

I start with the sequential program
I add a little bit of parallelism at a time
I see how it works, change it, add some more, . . .
I contrast with MPI “all or nothing” approach

I programmer inserts directives and function calls into sequential program
I in C, a directive is a pragma
I stands for pragmatic information
I a general way to pass additional information to the compiler in a form not supported by the C

language
I a compiler that does not recognize a kind of pragma can just ignore it
I #pragma omp ...

I the sequential program remains embedded in the OpenMP version
I just ignore the pragmas
I replace function calls with trivial implementations

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 2



Sequential Dot Product (Chapman et al., Using OpenMP)

#include<stdio.h>

int main() {

double sum, a[256], b[256];

int status, i, n=256;

for (i = 0; i < n; i++) {

a[i] = i * 0.5;

b[i] = i * 2.0;

}

sum = 0;

for (i = 0; i < n; i++) {

sum = sum + a[i]*b[i];

}

printf("sum = %f \n", sum);

}

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 3



Dot Proudct in OpenMP (Chapman et al., Using OpenMP)

#include<stdio.h>

int main() {

double sum, a[256], b[256];

int status, i, n=256;

for (i = 0; i < n; i++) {

a[i] = i * 0.5;

b[i] = i * 2.0;

}

sum = 0;

#pragma omp parallel for reduction(+:sum)

for (i = 0; i < n; i++) {

sum = sum + a[i]*b[i];

}

printf("sum = %f \n", sum);

}

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 4



Basic Syntactic Concepts

I most directives are applied to the following structured block S
I S may be almost any kind of statement

I a compound statement {...} (this is most common)
I S must have single point of entry and single point of exit
I may be a loop

I if enclosing in curly braces would be a structured block

I may be an if statement
I if enclosing in curly braces would be a structured block

I in C, the directives have the form #pragma omp ...

I you can put non-newline white space before or after the #

I the directive terminates with the end of the logical line
I long directives can be spread over multiple physical lines by ending each physical line but

the last with \
I in C, these physical lines are merged into one logical line at a very early stage of compilation

(before preprocessing)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 5



Basic Syntactic Concepts

I most directives are applied to the following structured block S

I S may be almost any kind of statement
I a compound statement {...} (this is most common)
I S must have single point of entry and single point of exit
I may be a loop

I if enclosing in curly braces would be a structured block

I may be an if statement
I if enclosing in curly braces would be a structured block

I in C, the directives have the form #pragma omp ...

I you can put non-newline white space before or after the #

I the directive terminates with the end of the logical line
I long directives can be spread over multiple physical lines by ending each physical line but

the last with \
I in C, these physical lines are merged into one logical line at a very early stage of compilation

(before preprocessing)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 5



Basic Syntactic Concepts

I most directives are applied to the following structured block S
I S may be almost any kind of statement

I a compound statement {...} (this is most common)
I S must have single point of entry and single point of exit
I may be a loop

I if enclosing in curly braces would be a structured block

I may be an if statement
I if enclosing in curly braces would be a structured block

I in C, the directives have the form #pragma omp ...

I you can put non-newline white space before or after the #

I the directive terminates with the end of the logical line
I long directives can be spread over multiple physical lines by ending each physical line but

the last with \
I in C, these physical lines are merged into one logical line at a very early stage of compilation

(before preprocessing)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 5



Basic Syntactic Concepts

I most directives are applied to the following structured block S
I S may be almost any kind of statement

I a compound statement {...} (this is most common)

I S must have single point of entry and single point of exit
I may be a loop

I if enclosing in curly braces would be a structured block

I may be an if statement
I if enclosing in curly braces would be a structured block

I in C, the directives have the form #pragma omp ...

I you can put non-newline white space before or after the #

I the directive terminates with the end of the logical line
I long directives can be spread over multiple physical lines by ending each physical line but

the last with \
I in C, these physical lines are merged into one logical line at a very early stage of compilation

(before preprocessing)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 5



Basic Syntactic Concepts

I most directives are applied to the following structured block S
I S may be almost any kind of statement

I a compound statement {...} (this is most common)
I S must have single point of entry and single point of exit

I may be a loop
I if enclosing in curly braces would be a structured block

I may be an if statement
I if enclosing in curly braces would be a structured block

I in C, the directives have the form #pragma omp ...

I you can put non-newline white space before or after the #

I the directive terminates with the end of the logical line
I long directives can be spread over multiple physical lines by ending each physical line but

the last with \
I in C, these physical lines are merged into one logical line at a very early stage of compilation

(before preprocessing)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 5



Basic Syntactic Concepts

I most directives are applied to the following structured block S
I S may be almost any kind of statement

I a compound statement {...} (this is most common)
I S must have single point of entry and single point of exit
I may be a loop

I if enclosing in curly braces would be a structured block

I may be an if statement
I if enclosing in curly braces would be a structured block

I in C, the directives have the form #pragma omp ...

I you can put non-newline white space before or after the #

I the directive terminates with the end of the logical line
I long directives can be spread over multiple physical lines by ending each physical line but

the last with \
I in C, these physical lines are merged into one logical line at a very early stage of compilation

(before preprocessing)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 5



Basic Syntactic Concepts

I most directives are applied to the following structured block S
I S may be almost any kind of statement

I a compound statement {...} (this is most common)
I S must have single point of entry and single point of exit
I may be a loop

I if enclosing in curly braces would be a structured block

I may be an if statement
I if enclosing in curly braces would be a structured block

I in C, the directives have the form #pragma omp ...

I you can put non-newline white space before or after the #

I the directive terminates with the end of the logical line
I long directives can be spread over multiple physical lines by ending each physical line but

the last with \
I in C, these physical lines are merged into one logical line at a very early stage of compilation

(before preprocessing)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 5



Basic Syntactic Concepts

I most directives are applied to the following structured block S
I S may be almost any kind of statement

I a compound statement {...} (this is most common)
I S must have single point of entry and single point of exit
I may be a loop

I if enclosing in curly braces would be a structured block

I may be an if statement
I if enclosing in curly braces would be a structured block

I in C, the directives have the form #pragma omp ...

I you can put non-newline white space before or after the #

I the directive terminates with the end of the logical line
I long directives can be spread over multiple physical lines by ending each physical line but

the last with \
I in C, these physical lines are merged into one logical line at a very early stage of compilation

(before preprocessing)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 5



Basic Syntactic Concepts

I most directives are applied to the following structured block S
I S may be almost any kind of statement

I a compound statement {...} (this is most common)
I S must have single point of entry and single point of exit
I may be a loop

I if enclosing in curly braces would be a structured block

I may be an if statement
I if enclosing in curly braces would be a structured block

I in C, the directives have the form #pragma omp ...

I you can put non-newline white space before or after the #

I the directive terminates with the end of the logical line
I long directives can be spread over multiple physical lines by ending each physical line but

the last with \
I in C, these physical lines are merged into one logical line at a very early stage of compilation

(before preprocessing)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 5



Basic Syntactic Concepts

I most directives are applied to the following structured block S
I S may be almost any kind of statement

I a compound statement {...} (this is most common)
I S must have single point of entry and single point of exit
I may be a loop

I if enclosing in curly braces would be a structured block

I may be an if statement
I if enclosing in curly braces would be a structured block

I in C, the directives have the form #pragma omp ...

I you can put non-newline white space before or after the #

I the directive terminates with the end of the logical line

I long directives can be spread over multiple physical lines by ending each physical line but
the last with \
I in C, these physical lines are merged into one logical line at a very early stage of compilation

(before preprocessing)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 5



Basic Syntactic Concepts

I most directives are applied to the following structured block S
I S may be almost any kind of statement

I a compound statement {...} (this is most common)
I S must have single point of entry and single point of exit
I may be a loop

I if enclosing in curly braces would be a structured block

I may be an if statement
I if enclosing in curly braces would be a structured block

I in C, the directives have the form #pragma omp ...

I you can put non-newline white space before or after the #

I the directive terminates with the end of the logical line
I long directives can be spread over multiple physical lines by ending each physical line but

the last with \
I in C, these physical lines are merged into one logical line at a very early stage of compilation

(before preprocessing)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 5



Spreading a logical line over multiple physical lines

#pragma omp this is my really big long \

pragma that keeps going and going and \

going on and on and on and on and on \

and on and on

for (i=0; i<n; i++) {

...

}

Beware: You cannot have any white space after the \. It must be the last character on the
physical line.

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 6



Compiling and runnning an OpenMP program

I use gcc or clang, add flag -fopenmp; everything else the same

gcc -fopenmp -o dot dot.c

./dot

I without the flag -fopenmp
I header file omp.h will not necessarily be found
I pragmas will just be ignored; program will be sequential

I Apple users
I for reasons that escape me, Apple’s version of clang does not have OpenMP support
I advice: install clang yourself using MacPorts

I sudo port install clang-9.0, or later
I then use clang-mp-9.0

I general: all compilers
I the preprocessor object macro _OPENMP is defined iff you are running the compiler with

OpenMP support
I value is yyyymm, where yyyy is the year of the Standard supported, and mm is the month
I permits things like #ifdef _OPENMP ... #else ...

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 7



Compiling and runnning an OpenMP program

I use gcc or clang, add flag -fopenmp; everything else the same

gcc -fopenmp -o dot dot.c

./dot

I without the flag -fopenmp
I header file omp.h will not necessarily be found
I pragmas will just be ignored; program will be sequential

I Apple users
I for reasons that escape me, Apple’s version of clang does not have OpenMP support
I advice: install clang yourself using MacPorts

I sudo port install clang-9.0, or later
I then use clang-mp-9.0

I general: all compilers
I the preprocessor object macro _OPENMP is defined iff you are running the compiler with

OpenMP support
I value is yyyymm, where yyyy is the year of the Standard supported, and mm is the month
I permits things like #ifdef _OPENMP ... #else ...

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 7



Compiling and runnning an OpenMP program

I use gcc or clang, add flag -fopenmp; everything else the same

gcc -fopenmp -o dot dot.c

./dot

I without the flag -fopenmp
I header file omp.h will not necessarily be found
I pragmas will just be ignored; program will be sequential

I Apple users
I for reasons that escape me, Apple’s version of clang does not have OpenMP support
I advice: install clang yourself using MacPorts

I sudo port install clang-9.0, or later
I then use clang-mp-9.0

I general: all compilers
I the preprocessor object macro _OPENMP is defined iff you are running the compiler with

OpenMP support
I value is yyyymm, where yyyy is the year of the Standard supported, and mm is the month
I permits things like #ifdef _OPENMP ... #else ...

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 7



Compiling and runnning an OpenMP program

I use gcc or clang, add flag -fopenmp; everything else the same

gcc -fopenmp -o dot dot.c

./dot

I without the flag -fopenmp
I header file omp.h will not necessarily be found
I pragmas will just be ignored; program will be sequential

I Apple users
I for reasons that escape me, Apple’s version of clang does not have OpenMP support
I advice: install clang yourself using MacPorts

I sudo port install clang-9.0, or later
I then use clang-mp-9.0

I general: all compilers
I the preprocessor object macro _OPENMP is defined iff you are running the compiler with

OpenMP support
I value is yyyymm, where yyyy is the year of the Standard supported, and mm is the month
I permits things like #ifdef _OPENMP ... #else ...

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 7



Compiling and runnning an OpenMP program

I use gcc or clang, add flag -fopenmp; everything else the same

gcc -fopenmp -o dot dot.c

./dot

I without the flag -fopenmp
I header file omp.h will not necessarily be found
I pragmas will just be ignored; program will be sequential

I Apple users
I for reasons that escape me, Apple’s version of clang does not have OpenMP support
I advice: install clang yourself using MacPorts

I sudo port install clang-9.0, or later
I then use clang-mp-9.0

I general: all compilers
I the preprocessor object macro _OPENMP is defined iff you are running the compiler with

OpenMP support
I value is yyyymm, where yyyy is the year of the Standard supported, and mm is the month
I permits things like #ifdef _OPENMP ... #else ...

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 7



The parallel directive

#pragma omp parallel [clauses]
S

I a program begins execution with one thread

I executing a parallel directive creates a parallel region
I when control enters the region, a team of threads is created

I the team includes the original thread, known as the master thread

I all of the threads in the team execute the statement S concurrently

I S is typically a big compound statement

I additional directives inside S control how threads in the team behave
I at the end of S there is an implicit barrier

I all threads join up at this point
I all threads other than the master essentially disappear

I the master continues execution

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 8



The parallel directive

#pragma omp parallel [clauses]
S

I a program begins execution with one thread

I executing a parallel directive creates a parallel region
I when control enters the region, a team of threads is created

I the team includes the original thread, known as the master thread

I all of the threads in the team execute the statement S concurrently

I S is typically a big compound statement

I additional directives inside S control how threads in the team behave
I at the end of S there is an implicit barrier

I all threads join up at this point
I all threads other than the master essentially disappear

I the master continues execution

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 8



The parallel directive

#pragma omp parallel [clauses]
S

I a program begins execution with one thread

I executing a parallel directive creates a parallel region
I when control enters the region, a team of threads is created

I the team includes the original thread, known as the master thread

I all of the threads in the team execute the statement S concurrently

I S is typically a big compound statement

I additional directives inside S control how threads in the team behave
I at the end of S there is an implicit barrier

I all threads join up at this point
I all threads other than the master essentially disappear

I the master continues execution

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 8



The parallel directive

#pragma omp parallel [clauses]
S

I a program begins execution with one thread

I executing a parallel directive creates a parallel region

I when control enters the region, a team of threads is created
I the team includes the original thread, known as the master thread

I all of the threads in the team execute the statement S concurrently

I S is typically a big compound statement

I additional directives inside S control how threads in the team behave
I at the end of S there is an implicit barrier

I all threads join up at this point
I all threads other than the master essentially disappear

I the master continues execution

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 8



The parallel directive

#pragma omp parallel [clauses]
S

I a program begins execution with one thread

I executing a parallel directive creates a parallel region
I when control enters the region, a team of threads is created

I the team includes the original thread, known as the master thread

I all of the threads in the team execute the statement S concurrently

I S is typically a big compound statement

I additional directives inside S control how threads in the team behave
I at the end of S there is an implicit barrier

I all threads join up at this point
I all threads other than the master essentially disappear

I the master continues execution

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 8



The parallel directive

#pragma omp parallel [clauses]
S

I a program begins execution with one thread

I executing a parallel directive creates a parallel region
I when control enters the region, a team of threads is created

I the team includes the original thread, known as the master thread

I all of the threads in the team execute the statement S concurrently

I S is typically a big compound statement

I additional directives inside S control how threads in the team behave
I at the end of S there is an implicit barrier

I all threads join up at this point
I all threads other than the master essentially disappear

I the master continues execution

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 8



The parallel directive

#pragma omp parallel [clauses]
S

I a program begins execution with one thread

I executing a parallel directive creates a parallel region
I when control enters the region, a team of threads is created

I the team includes the original thread, known as the master thread

I all of the threads in the team execute the statement S concurrently

I S is typically a big compound statement

I additional directives inside S control how threads in the team behave
I at the end of S there is an implicit barrier

I all threads join up at this point
I all threads other than the master essentially disappear

I the master continues execution

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 8



The parallel directive

#pragma omp parallel [clauses]
S

I a program begins execution with one thread

I executing a parallel directive creates a parallel region
I when control enters the region, a team of threads is created

I the team includes the original thread, known as the master thread

I all of the threads in the team execute the statement S concurrently

I S is typically a big compound statement

I additional directives inside S control how threads in the team behave

I at the end of S there is an implicit barrier
I all threads join up at this point
I all threads other than the master essentially disappear

I the master continues execution

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 8



The parallel directive

#pragma omp parallel [clauses]
S

I a program begins execution with one thread

I executing a parallel directive creates a parallel region
I when control enters the region, a team of threads is created

I the team includes the original thread, known as the master thread

I all of the threads in the team execute the statement S concurrently

I S is typically a big compound statement

I additional directives inside S control how threads in the team behave
I at the end of S there is an implicit barrier

I all threads join up at this point
I all threads other than the master essentially disappear

I the master continues execution

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 8



The parallel directive

#pragma omp parallel [clauses]
S

I a program begins execution with one thread

I executing a parallel directive creates a parallel region
I when control enters the region, a team of threads is created

I the team includes the original thread, known as the master thread

I all of the threads in the team execute the statement S concurrently

I S is typically a big compound statement

I additional directives inside S control how threads in the team behave
I at the end of S there is an implicit barrier

I all threads join up at this point
I all threads other than the master essentially disappear

I the master continues execution

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 8



hello1.c: parallel directive example

#include <stdio.h>

int main () {

printf("I am the master.\n"); // just the master

#pragma omp parallel

{

printf("Hello, world.\n"); // all threads

} /* end of parallel region */

printf("Goodbye, world.\n"); // just the master

}

omp$ cc -fopenmp hello1.c

omp$ ./a.out

I am the master.

Hello, world.

Hello, world.

Goodbye, world.

omp$

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 9



hello1.c: parallel directive example

#include <stdio.h>

int main () {

printf("I am the master.\n"); // just the master

#pragma omp parallel

{

printf("Hello, world.\n"); // all threads

} /* end of parallel region */

printf("Goodbye, world.\n"); // just the master

}

omp$ cc -fopenmp hello1.c

omp$ ./a.out

I am the master.

Hello, world.

Hello, world.

Goodbye, world.

omp$

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 9



Basic OMP functions

I need to #include <omp.h>

I int omp_get_num_threads()
I returns the number of threads in the team in the current region

I int omp_get_thread_num()
I returns the ID of the calling thread
I threads within a team are numbered 0, 1, . . .
I master thread is always thread 0

I omp_get_wtime()
I returns the wall clock time (like MPI_Wtime)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 10



Basic OMP functions

I need to #include <omp.h>

I int omp_get_num_threads()
I returns the number of threads in the team in the current region

I int omp_get_thread_num()
I returns the ID of the calling thread
I threads within a team are numbered 0, 1, . . .
I master thread is always thread 0

I omp_get_wtime()
I returns the wall clock time (like MPI_Wtime)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 10



Basic OMP functions

I need to #include <omp.h>

I int omp_get_num_threads()
I returns the number of threads in the team in the current region

I int omp_get_thread_num()
I returns the ID of the calling thread
I threads within a team are numbered 0, 1, . . .
I master thread is always thread 0

I omp_get_wtime()
I returns the wall clock time (like MPI_Wtime)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 10



Basic OMP functions

I need to #include <omp.h>

I int omp_get_num_threads()
I returns the number of threads in the team in the current region

I int omp_get_thread_num()
I returns the ID of the calling thread
I threads within a team are numbered 0, 1, . . .
I master thread is always thread 0

I omp_get_wtime()
I returns the wall clock time (like MPI_Wtime)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP 10


