
CISC 372: Parallel Computing
OpenMP, Part 2

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware



Private vs. shared variables

I if a variable is declared within the parallel region. . .
I all threads have their own copy of that variable

I if a variable is declared before the parallel region and is visible in the region. . .
I you have a choice: variable can be

I private: all threads get their own private copy of the variable (in addition to the original), or
I shared: one shared variable

I specify what you want by clauses of the form
I shared(u1,u2,...)
I private(v1,v2,...)

I some (obvious) points
I the u1,u2,. . . and v1,v2,. . . must all be visible at this point
I a variable cannot be both shared and private

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 2



Private vs. shared variables

I if a variable is declared within the parallel region. . .
I all threads have their own copy of that variable

I if a variable is declared before the parallel region and is visible in the region. . .
I you have a choice: variable can be

I private: all threads get their own private copy of the variable (in addition to the original), or
I shared: one shared variable

I specify what you want by clauses of the form
I shared(u1,u2,...)
I private(v1,v2,...)

I some (obvious) points
I the u1,u2,. . . and v1,v2,. . . must all be visible at this point
I a variable cannot be both shared and private

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 2



Private vs. shared variables

I if a variable is declared within the parallel region. . .
I all threads have their own copy of that variable

I if a variable is declared before the parallel region and is visible in the region. . .
I you have a choice: variable can be

I private: all threads get their own private copy of the variable (in addition to the original), or
I shared: one shared variable

I specify what you want by clauses of the form
I shared(u1,u2,...)
I private(v1,v2,...)

I some (obvious) points
I the u1,u2,. . . and v1,v2,. . . must all be visible at this point
I a variable cannot be both shared and private

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 2



Private vs. shared variables

I if a variable is declared within the parallel region. . .
I all threads have their own copy of that variable

I if a variable is declared before the parallel region and is visible in the region. . .
I you have a choice: variable can be

I private: all threads get their own private copy of the variable (in addition to the original), or

I shared: one shared variable

I specify what you want by clauses of the form
I shared(u1,u2,...)
I private(v1,v2,...)

I some (obvious) points
I the u1,u2,. . . and v1,v2,. . . must all be visible at this point
I a variable cannot be both shared and private

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 2



Private vs. shared variables

I if a variable is declared within the parallel region. . .
I all threads have their own copy of that variable

I if a variable is declared before the parallel region and is visible in the region. . .
I you have a choice: variable can be

I private: all threads get their own private copy of the variable (in addition to the original), or
I shared: one shared variable

I specify what you want by clauses of the form
I shared(u1,u2,...)
I private(v1,v2,...)

I some (obvious) points
I the u1,u2,. . . and v1,v2,. . . must all be visible at this point
I a variable cannot be both shared and private

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 2



Private vs. shared variables

I if a variable is declared within the parallel region. . .
I all threads have their own copy of that variable

I if a variable is declared before the parallel region and is visible in the region. . .
I you have a choice: variable can be

I private: all threads get their own private copy of the variable (in addition to the original), or
I shared: one shared variable

I specify what you want by clauses of the form
I shared(u1,u2,...)
I private(v1,v2,...)

I some (obvious) points
I the u1,u2,. . . and v1,v2,. . . must all be visible at this point
I a variable cannot be both shared and private

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 2



Private vs. shared variables

I if a variable is declared within the parallel region. . .
I all threads have their own copy of that variable

I if a variable is declared before the parallel region and is visible in the region. . .
I you have a choice: variable can be

I private: all threads get their own private copy of the variable (in addition to the original), or
I shared: one shared variable

I specify what you want by clauses of the form
I shared(u1,u2,...)
I private(v1,v2,...)

I some (obvious) points
I the u1,u2,. . . and v1,v2,. . . must all be visible at this point

I a variable cannot be both shared and private

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 2



Private vs. shared variables

I if a variable is declared within the parallel region. . .
I all threads have their own copy of that variable

I if a variable is declared before the parallel region and is visible in the region. . .
I you have a choice: variable can be

I private: all threads get their own private copy of the variable (in addition to the original), or
I shared: one shared variable

I specify what you want by clauses of the form
I shared(u1,u2,...)
I private(v1,v2,...)

I some (obvious) points
I the u1,u2,. . . and v1,v2,. . . must all be visible at this point
I a variable cannot be both shared and private

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 2



The default clause

I sets the default for private vs. shared in the parallel region
I default(none)

I no default
I every variable used in parallel region must be explicitly listed in shared or private

I default(shared)
I if not listed, the variable is shared

I there are rules specifying what happens if you don’t have a default clause
I but ignore them for now
I explicitly declare every variable used in the region as either private or shared

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 3



The default clause

I sets the default for private vs. shared in the parallel region

I default(none)
I no default
I every variable used in parallel region must be explicitly listed in shared or private

I default(shared)
I if not listed, the variable is shared

I there are rules specifying what happens if you don’t have a default clause
I but ignore them for now
I explicitly declare every variable used in the region as either private or shared

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 3



The default clause

I sets the default for private vs. shared in the parallel region
I default(none)

I no default
I every variable used in parallel region must be explicitly listed in shared or private

I default(shared)
I if not listed, the variable is shared

I there are rules specifying what happens if you don’t have a default clause
I but ignore them for now
I explicitly declare every variable used in the region as either private or shared

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 3



The default clause

I sets the default for private vs. shared in the parallel region
I default(none)

I no default
I every variable used in parallel region must be explicitly listed in shared or private

I default(shared)
I if not listed, the variable is shared

I there are rules specifying what happens if you don’t have a default clause
I but ignore them for now
I explicitly declare every variable used in the region as either private or shared

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 3



The default clause

I sets the default for private vs. shared in the parallel region
I default(none)

I no default
I every variable used in parallel region must be explicitly listed in shared or private

I default(shared)
I if not listed, the variable is shared

I there are rules specifying what happens if you don’t have a default clause
I but ignore them for now
I explicitly declare every variable used in the region as either private or shared

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 3



hello2.c

#include <omp.h>

#include <stdio.h>

int main (int argc, char *argv[]) {

int nthreads, tid;

#pragma omp parallel private(nthreads, tid)

{

tid = omp_get_thread_num();

printf("Hello World from thread = %d\n", tid);

if (tid == 0) { // only master

nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

} // end of parallel region

}

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 4



num_threads(): requesting the number of threads

I you can request that the team have a specified number of threads
I clause: num_threads(expr)

I where expr is an expression which evaluates to a positive integer

I the runtime system may give you the requested number of threads
I or it may give you fewer

I if you really need to know how many there are, ask
I int omp_get_num_threads()

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 5



num_threads(): requesting the number of threads

I you can request that the team have a specified number of threads

I clause: num_threads(expr)
I where expr is an expression which evaluates to a positive integer

I the runtime system may give you the requested number of threads
I or it may give you fewer

I if you really need to know how many there are, ask
I int omp_get_num_threads()

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 5



num_threads(): requesting the number of threads

I you can request that the team have a specified number of threads
I clause: num_threads(expr)

I where expr is an expression which evaluates to a positive integer

I the runtime system may give you the requested number of threads
I or it may give you fewer

I if you really need to know how many there are, ask
I int omp_get_num_threads()

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 5



num_threads(): requesting the number of threads

I you can request that the team have a specified number of threads
I clause: num_threads(expr)

I where expr is an expression which evaluates to a positive integer

I the runtime system may give you the requested number of threads
I or it may give you fewer

I if you really need to know how many there are, ask
I int omp_get_num_threads()

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 5



num_threads(): requesting the number of threads

I you can request that the team have a specified number of threads
I clause: num_threads(expr)

I where expr is an expression which evaluates to a positive integer

I the runtime system may give you the requested number of threads
I or it may give you fewer

I if you really need to know how many there are, ask
I int omp_get_num_threads()

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 5



Initializing private variables

I suppose x is an integer variable declared before entering a parallel region

I value of x is 5 upon reaching the parallel region

I x is declared private

I when control enters the parallel region, what is the initial value of x?

I answer: undefined, even on master thread

I try it! see initial.c

I if you want the private x to be initialized with the value the original x had:
I use firstprivate

I clause: firstprivate(v1,v2,...)
I declares v1,v2,. . . to be not only private, but to be initialized with global value
I see initial2.c

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 6



Initializing private variables

I suppose x is an integer variable declared before entering a parallel region

I value of x is 5 upon reaching the parallel region

I x is declared private

I when control enters the parallel region, what is the initial value of x?

I answer: undefined, even on master thread

I try it! see initial.c

I if you want the private x to be initialized with the value the original x had:
I use firstprivate

I clause: firstprivate(v1,v2,...)
I declares v1,v2,. . . to be not only private, but to be initialized with global value
I see initial2.c

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 6



Initializing private variables

I suppose x is an integer variable declared before entering a parallel region

I value of x is 5 upon reaching the parallel region

I x is declared private

I when control enters the parallel region, what is the initial value of x?

I answer: undefined, even on master thread

I try it! see initial.c

I if you want the private x to be initialized with the value the original x had:
I use firstprivate

I clause: firstprivate(v1,v2,...)
I declares v1,v2,. . . to be not only private, but to be initialized with global value
I see initial2.c

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 6



Initializing private variables

I suppose x is an integer variable declared before entering a parallel region

I value of x is 5 upon reaching the parallel region

I x is declared private

I when control enters the parallel region, what is the initial value of x?

I answer: undefined, even on master thread

I try it! see initial.c

I if you want the private x to be initialized with the value the original x had:
I use firstprivate

I clause: firstprivate(v1,v2,...)
I declares v1,v2,. . . to be not only private, but to be initialized with global value
I see initial2.c

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 6



Initializing private variables

I suppose x is an integer variable declared before entering a parallel region

I value of x is 5 upon reaching the parallel region

I x is declared private

I when control enters the parallel region, what is the initial value of x?

I answer: undefined, even on master thread

I try it! see initial.c

I if you want the private x to be initialized with the value the original x had:
I use firstprivate

I clause: firstprivate(v1,v2,...)
I declares v1,v2,. . . to be not only private, but to be initialized with global value
I see initial2.c

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 6



Initializing private variables

I suppose x is an integer variable declared before entering a parallel region

I value of x is 5 upon reaching the parallel region

I x is declared private

I when control enters the parallel region, what is the initial value of x?

I answer: undefined, even on master thread

I try it! see initial.c

I if you want the private x to be initialized with the value the original x had:
I use firstprivate

I clause: firstprivate(v1,v2,...)
I declares v1,v2,. . . to be not only private, but to be initialized with global value
I see initial2.c

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 6



Initializing private variables

I suppose x is an integer variable declared before entering a parallel region

I value of x is 5 upon reaching the parallel region

I x is declared private

I when control enters the parallel region, what is the initial value of x?

I answer: undefined, even on master thread

I try it! see initial.c

I if you want the private x to be initialized with the value the original x had:
I use firstprivate

I clause: firstprivate(v1,v2,...)
I declares v1,v2,. . . to be not only private, but to be initialized with global value
I see initial2.c

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 6



Initializing private variables

I suppose x is an integer variable declared before entering a parallel region

I value of x is 5 upon reaching the parallel region

I x is declared private

I when control enters the parallel region, what is the initial value of x?

I answer: undefined, even on master thread

I try it! see initial.c

I if you want the private x to be initialized with the value the original x had:
I use firstprivate

I clause: firstprivate(v1,v2,...)
I declares v1,v2,. . . to be not only private, but to be initialized with global value
I see initial2.c

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 6



Constructs, regions, and modification of original variable of private

OpenMP 4.0 Sec. 1.2.2:

construct. An OpenMP executable directive . . . and the associated statement, loop or struc-
tured block, if any, not including the code in any called routines. That is, in the lexical extent
of an executable directive.

region. All code encountered during a specific instance of the execution of a given construct
or of an OpenMP library routine. A region includes any code in called routines as well as any
implicit code introduced by the OpenMP implementation.

Sec. 2.14.3.3, private clause:

The value . . . of the original list item will change only

I if accessed and modified via pointer,
I if possibly accessed in the region but outside of the construct, [or]
I as a side effect of directives or clauses[.]

I beware! when you access a “private” variable outside of the construct
I you may be accessing the original copy; see semiprivate.c

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 7



Constructs, regions, and modification of original variable of private

OpenMP 4.0 Sec. 1.2.2:

construct. An OpenMP executable directive . . . and the associated statement, loop or struc-
tured block, if any, not including the code in any called routines. That is, in the lexical extent
of an executable directive.

region. All code encountered during a specific instance of the execution of a given construct
or of an OpenMP library routine. A region includes any code in called routines as well as any
implicit code introduced by the OpenMP implementation.

Sec. 2.14.3.3, private clause:

The value . . . of the original list item will change only

I if accessed and modified via pointer,
I if possibly accessed in the region but outside of the construct, [or]
I as a side effect of directives or clauses[.]

I beware! when you access a “private” variable outside of the construct
I you may be accessing the original copy; see semiprivate.c

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 7



Constructs, regions, and modification of original variable of private

OpenMP 4.0 Sec. 1.2.2:

construct. An OpenMP executable directive . . . and the associated statement, loop or struc-
tured block, if any, not including the code in any called routines. That is, in the lexical extent
of an executable directive.

region. All code encountered during a specific instance of the execution of a given construct
or of an OpenMP library routine. A region includes any code in called routines as well as any
implicit code introduced by the OpenMP implementation.

Sec. 2.14.3.3, private clause:

The value . . . of the original list item will change only

I if accessed and modified via pointer,
I if possibly accessed in the region but outside of the construct, [or]
I as a side effect of directives or clauses[.]

I beware! when you access a “private” variable outside of the construct
I you may be accessing the original copy; see semiprivate.c

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 7



Constructs, regions, and modification of original variable of private

OpenMP 4.0 Sec. 1.2.2:

construct. An OpenMP executable directive . . . and the associated statement, loop or struc-
tured block, if any, not including the code in any called routines. That is, in the lexical extent
of an executable directive.

region. All code encountered during a specific instance of the execution of a given construct
or of an OpenMP library routine. A region includes any code in called routines as well as any
implicit code introduced by the OpenMP implementation.

Sec. 2.14.3.3, private clause:

The value . . . of the original list item will change only

I if accessed and modified via pointer,
I if possibly accessed in the region but outside of the construct, [or]
I as a side effect of directives or clauses[.]

I beware! when you access a “private” variable outside of the construct
I you may be accessing the original copy; see semiprivate.c

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 7



Constructs, regions, and modification of original variable of private

OpenMP 4.0 Sec. 1.2.2:

construct. An OpenMP executable directive . . . and the associated statement, loop or struc-
tured block, if any, not including the code in any called routines. That is, in the lexical extent
of an executable directive.

region. All code encountered during a specific instance of the execution of a given construct
or of an OpenMP library routine. A region includes any code in called routines as well as any
implicit code introduced by the OpenMP implementation.

Sec. 2.14.3.3, private clause:

The value . . . of the original list item will change only

I if accessed and modified via pointer,
I if possibly accessed in the region but outside of the construct, [or]
I as a side effect of directives or clauses[.]

I beware! when you access a “private” variable outside of the construct
I you may be accessing the original copy; see semiprivate.c

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 7



Work-sharing

I you usually don’t want all threads in the team to do the same thing

I you can code in branches on thread ID manually, but this is very tedious
I OpenMP provides more convenient, higher-level constructs

I these are specified using directives within a parallel region

I one class of such constructs are the work-sharing constructs
I these specify how work is to be divided up among members of the team
I kinds of work-sharing constructs

I for loops: distribute iterations to team members
I sections: distribute independent code bocks (work units)
I single: let only one thread execute a block

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 8



Work-sharing

I you usually don’t want all threads in the team to do the same thing

I you can code in branches on thread ID manually, but this is very tedious
I OpenMP provides more convenient, higher-level constructs

I these are specified using directives within a parallel region

I one class of such constructs are the work-sharing constructs
I these specify how work is to be divided up among members of the team
I kinds of work-sharing constructs

I for loops: distribute iterations to team members
I sections: distribute independent code bocks (work units)
I single: let only one thread execute a block

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 8



Work-sharing

I you usually don’t want all threads in the team to do the same thing

I you can code in branches on thread ID manually, but this is very tedious

I OpenMP provides more convenient, higher-level constructs
I these are specified using directives within a parallel region

I one class of such constructs are the work-sharing constructs
I these specify how work is to be divided up among members of the team
I kinds of work-sharing constructs

I for loops: distribute iterations to team members
I sections: distribute independent code bocks (work units)
I single: let only one thread execute a block

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 8



Work-sharing

I you usually don’t want all threads in the team to do the same thing

I you can code in branches on thread ID manually, but this is very tedious
I OpenMP provides more convenient, higher-level constructs

I these are specified using directives within a parallel region

I one class of such constructs are the work-sharing constructs
I these specify how work is to be divided up among members of the team
I kinds of work-sharing constructs

I for loops: distribute iterations to team members
I sections: distribute independent code bocks (work units)
I single: let only one thread execute a block

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 8



Work-sharing

I you usually don’t want all threads in the team to do the same thing

I you can code in branches on thread ID manually, but this is very tedious
I OpenMP provides more convenient, higher-level constructs

I these are specified using directives within a parallel region

I one class of such constructs are the work-sharing constructs

I these specify how work is to be divided up among members of the team
I kinds of work-sharing constructs

I for loops: distribute iterations to team members
I sections: distribute independent code bocks (work units)
I single: let only one thread execute a block

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 8



Work-sharing

I you usually don’t want all threads in the team to do the same thing

I you can code in branches on thread ID manually, but this is very tedious
I OpenMP provides more convenient, higher-level constructs

I these are specified using directives within a parallel region

I one class of such constructs are the work-sharing constructs
I these specify how work is to be divided up among members of the team

I kinds of work-sharing constructs
I for loops: distribute iterations to team members
I sections: distribute independent code bocks (work units)
I single: let only one thread execute a block

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 8



Work-sharing

I you usually don’t want all threads in the team to do the same thing

I you can code in branches on thread ID manually, but this is very tedious
I OpenMP provides more convenient, higher-level constructs

I these are specified using directives within a parallel region

I one class of such constructs are the work-sharing constructs
I these specify how work is to be divided up among members of the team
I kinds of work-sharing constructs

I for loops: distribute iterations to team members
I sections: distribute independent code bocks (work units)
I single: let only one thread execute a block

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 8



Work-sharing

I you usually don’t want all threads in the team to do the same thing

I you can code in branches on thread ID manually, but this is very tedious
I OpenMP provides more convenient, higher-level constructs

I these are specified using directives within a parallel region

I one class of such constructs are the work-sharing constructs
I these specify how work is to be divided up among members of the team
I kinds of work-sharing constructs

I for loops: distribute iterations to team members

I sections: distribute independent code bocks (work units)
I single: let only one thread execute a block

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 8



Work-sharing

I you usually don’t want all threads in the team to do the same thing

I you can code in branches on thread ID manually, but this is very tedious
I OpenMP provides more convenient, higher-level constructs

I these are specified using directives within a parallel region

I one class of such constructs are the work-sharing constructs
I these specify how work is to be divided up among members of the team
I kinds of work-sharing constructs

I for loops: distribute iterations to team members
I sections: distribute independent code bocks (work units)

I single: let only one thread execute a block

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 8



Work-sharing

I you usually don’t want all threads in the team to do the same thing

I you can code in branches on thread ID manually, but this is very tedious
I OpenMP provides more convenient, higher-level constructs

I these are specified using directives within a parallel region

I one class of such constructs are the work-sharing constructs
I these specify how work is to be divided up among members of the team
I kinds of work-sharing constructs

I for loops: distribute iterations to team members
I sections: distribute independent code bocks (work units)
I single: let only one thread execute a block

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 8



Worksharing constructs: for loops

I syntax

#pragma omp for [clauses ]

for (init-expr; var relop b; incr-expr)
body

I semantics
I each iteration is executed by exactly one thread in the team
I barrier at end of loop
I in general, everything else is unspecified

I how the iterations are distributed among the team members
I the order in which the iterations are executed
I what happens concurrently

I syntactic restrictions on the for statement:
I init-expr: var = expr, integer type
I relop is one of: <, <=, >, >=
I b is a loop-invariant integer expression
I incr-expr has one of a few forms; see OpenMP 4.0 Standard, Section 2.6

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 9



Worksharing constructs: for loops

I syntax

#pragma omp for [clauses ]

for (init-expr; var relop b; incr-expr)
body

I semantics
I each iteration is executed by exactly one thread in the team
I barrier at end of loop
I in general, everything else is unspecified

I how the iterations are distributed among the team members
I the order in which the iterations are executed
I what happens concurrently

I syntactic restrictions on the for statement:
I init-expr: var = expr, integer type
I relop is one of: <, <=, >, >=
I b is a loop-invariant integer expression
I incr-expr has one of a few forms; see OpenMP 4.0 Standard, Section 2.6

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 9



Worksharing constructs: for loops

I syntax

#pragma omp for [clauses ]

for (init-expr; var relop b; incr-expr)
body

I semantics
I each iteration is executed by exactly one thread in the team

I barrier at end of loop
I in general, everything else is unspecified

I how the iterations are distributed among the team members
I the order in which the iterations are executed
I what happens concurrently

I syntactic restrictions on the for statement:
I init-expr: var = expr, integer type
I relop is one of: <, <=, >, >=
I b is a loop-invariant integer expression
I incr-expr has one of a few forms; see OpenMP 4.0 Standard, Section 2.6

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 9



Worksharing constructs: for loops

I syntax

#pragma omp for [clauses ]

for (init-expr; var relop b; incr-expr)
body

I semantics
I each iteration is executed by exactly one thread in the team
I barrier at end of loop

I in general, everything else is unspecified
I how the iterations are distributed among the team members
I the order in which the iterations are executed
I what happens concurrently

I syntactic restrictions on the for statement:
I init-expr: var = expr, integer type
I relop is one of: <, <=, >, >=
I b is a loop-invariant integer expression
I incr-expr has one of a few forms; see OpenMP 4.0 Standard, Section 2.6

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 9



Worksharing constructs: for loops

I syntax

#pragma omp for [clauses ]

for (init-expr; var relop b; incr-expr)
body

I semantics
I each iteration is executed by exactly one thread in the team
I barrier at end of loop
I in general, everything else is unspecified

I how the iterations are distributed among the team members
I the order in which the iterations are executed
I what happens concurrently

I syntactic restrictions on the for statement:
I init-expr: var = expr, integer type
I relop is one of: <, <=, >, >=
I b is a loop-invariant integer expression
I incr-expr has one of a few forms; see OpenMP 4.0 Standard, Section 2.6

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 9



Worksharing constructs: for loops

I syntax

#pragma omp for [clauses ]

for (init-expr; var relop b; incr-expr)
body

I semantics
I each iteration is executed by exactly one thread in the team
I barrier at end of loop
I in general, everything else is unspecified

I how the iterations are distributed among the team members
I the order in which the iterations are executed
I what happens concurrently

I syntactic restrictions on the for statement:

I init-expr: var = expr, integer type
I relop is one of: <, <=, >, >=
I b is a loop-invariant integer expression
I incr-expr has one of a few forms; see OpenMP 4.0 Standard, Section 2.6

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 9



Worksharing constructs: for loops

I syntax

#pragma omp for [clauses ]

for (init-expr; var relop b; incr-expr)
body

I semantics
I each iteration is executed by exactly one thread in the team
I barrier at end of loop
I in general, everything else is unspecified

I how the iterations are distributed among the team members
I the order in which the iterations are executed
I what happens concurrently

I syntactic restrictions on the for statement:
I init-expr: var = expr, integer type
I relop is one of: <, <=, >, >=
I b is a loop-invariant integer expression
I incr-expr has one of a few forms; see OpenMP 4.0 Standard, Section 2.6

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 9



Allowed forms for increment expression in for loop

I ++var

I var++

I --var

I var--

I var += incr

I var -= incr

I var = var + incr

I var = incr + var

I var = var - incr

where incr is a loop invariant integer expression
I i.e., throughout one execution of the loop

I incr will have the same value each time control reaches the top of the loop

I however incr could have different values in different loop executions

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 10



Allowed forms for increment expression in for loop

I ++var

I var++

I --var

I var--

I var += incr

I var -= incr

I var = var + incr

I var = incr + var

I var = var - incr

where incr is a loop invariant integer expression

I i.e., throughout one execution of the loop
I incr will have the same value each time control reaches the top of the loop

I however incr could have different values in different loop executions

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 10



Allowed forms for increment expression in for loop

I ++var

I var++

I --var

I var--

I var += incr

I var -= incr

I var = var + incr

I var = incr + var

I var = var - incr

where incr is a loop invariant integer expression
I i.e., throughout one execution of the loop

I incr will have the same value each time control reaches the top of the loop

I however incr could have different values in different loop executions

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 10



Allowed forms for increment expression in for loop

I ++var

I var++

I --var

I var--

I var += incr

I var -= incr

I var = var + incr

I var = incr + var

I var = var - incr

where incr is a loop invariant integer expression
I i.e., throughout one execution of the loop

I incr will have the same value each time control reaches the top of the loop

I however incr could have different values in different loop executions
S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 10



Loop invariant expressions

for (i=0; i<n; i++) {

/* no writes to n */

}

Is n loop invariant?

Yes

for (i=0; i<n; i++) {

for (j=0; j<i; j++) {

/* no writes to i,j,n */

}

}

Is i invariant of inner loop? Yes

for (i=0; i<n; i++) {

int max = i;

for (j=0; j<max; j++) {

...

if (a[j]>max) max = a[j];

...

}

}

Is max invariant of inner loop?
Probably not

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 11



Loop invariant expressions

for (i=0; i<n; i++) {

/* no writes to n */

}

Is n loop invariant? Yes

for (i=0; i<n; i++) {

for (j=0; j<i; j++) {

/* no writes to i,j,n */

}

}

Is i invariant of inner loop?

Yes

for (i=0; i<n; i++) {

int max = i;

for (j=0; j<max; j++) {

...

if (a[j]>max) max = a[j];

...

}

}

Is max invariant of inner loop?
Probably not

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 11



Loop invariant expressions

for (i=0; i<n; i++) {

/* no writes to n */

}

Is n loop invariant? Yes

for (i=0; i<n; i++) {

for (j=0; j<i; j++) {

/* no writes to i,j,n */

}

}

Is i invariant of inner loop? Yes

for (i=0; i<n; i++) {

int max = i;

for (j=0; j<max; j++) {

...

if (a[j]>max) max = a[j];

...

}

}

Is max invariant of inner loop?

Probably not

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 11



Loop invariant expressions

for (i=0; i<n; i++) {

/* no writes to n */

}

Is n loop invariant? Yes

for (i=0; i<n; i++) {

for (j=0; j<i; j++) {

/* no writes to i,j,n */

}

}

Is i invariant of inner loop? Yes

for (i=0; i<n; i++) {

int max = i;

for (j=0; j<max; j++) {

...

if (a[j]>max) max = a[j];

...

}

}

Is max invariant of inner loop?
Probably not

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 11



Combining constructs

#omp parallel

#omp for

S

can be abbreviated

#omp parallel for

S

I other constructs can be abbreviated similarly

I this is useful when you have just one construct inside a parallel region
I clauses must be unambiguous

I if a clause is applicable only to parallel, fine
I if a clause if appicable only to for, fine
I if a clause is applicable to parallel and for

I if it has the same meaning for each (e.g., shared), no problem
I otherwise, undefined behavior

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 12



Combining constructs

#omp parallel

#omp for

S

can be abbreviated

#omp parallel for

S

I other constructs can be abbreviated similarly

I this is useful when you have just one construct inside a parallel region
I clauses must be unambiguous

I if a clause is applicable only to parallel, fine
I if a clause if appicable only to for, fine
I if a clause is applicable to parallel and for

I if it has the same meaning for each (e.g., shared), no problem
I otherwise, undefined behavior

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 12



Combining constructs

#omp parallel

#omp for

S

can be abbreviated

#omp parallel for

S

I other constructs can be abbreviated similarly

I this is useful when you have just one construct inside a parallel region
I clauses must be unambiguous

I if a clause is applicable only to parallel, fine
I if a clause if appicable only to for, fine
I if a clause is applicable to parallel and for

I if it has the same meaning for each (e.g., shared), no problem
I otherwise, undefined behavior

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 12



Combining constructs

#omp parallel

#omp for

S

can be abbreviated

#omp parallel for

S

I other constructs can be abbreviated similarly

I this is useful when you have just one construct inside a parallel region
I clauses must be unambiguous

I if a clause is applicable only to parallel, fine
I if a clause if appicable only to for, fine
I if a clause is applicable to parallel and for

I if it has the same meaning for each (e.g., shared), no problem
I otherwise, undefined behavior

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 12



Combining constructs

#omp parallel

#omp for

S

can be abbreviated

#omp parallel for

S

I other constructs can be abbreviated similarly

I this is useful when you have just one construct inside a parallel region

I clauses must be unambiguous
I if a clause is applicable only to parallel, fine
I if a clause if appicable only to for, fine
I if a clause is applicable to parallel and for

I if it has the same meaning for each (e.g., shared), no problem
I otherwise, undefined behavior

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 12



Combining constructs

#omp parallel

#omp for

S

can be abbreviated

#omp parallel for

S

I other constructs can be abbreviated similarly

I this is useful when you have just one construct inside a parallel region
I clauses must be unambiguous

I if a clause is applicable only to parallel, fine
I if a clause if appicable only to for, fine
I if a clause is applicable to parallel and for

I if it has the same meaning for each (e.g., shared), no problem
I otherwise, undefined behavior

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 12



Combining constructs

#omp parallel

#omp for

S

can be abbreviated

#omp parallel for

S

I other constructs can be abbreviated similarly

I this is useful when you have just one construct inside a parallel region
I clauses must be unambiguous

I if a clause is applicable only to parallel, fine

I if a clause if appicable only to for, fine
I if a clause is applicable to parallel and for

I if it has the same meaning for each (e.g., shared), no problem
I otherwise, undefined behavior

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 12



Combining constructs

#omp parallel

#omp for

S

can be abbreviated

#omp parallel for

S

I other constructs can be abbreviated similarly

I this is useful when you have just one construct inside a parallel region
I clauses must be unambiguous

I if a clause is applicable only to parallel, fine
I if a clause if appicable only to for, fine

I if a clause is applicable to parallel and for
I if it has the same meaning for each (e.g., shared), no problem
I otherwise, undefined behavior

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 12



Combining constructs

#omp parallel

#omp for

S

can be abbreviated

#omp parallel for

S

I other constructs can be abbreviated similarly

I this is useful when you have just one construct inside a parallel region
I clauses must be unambiguous

I if a clause is applicable only to parallel, fine
I if a clause if appicable only to for, fine
I if a clause is applicable to parallel and for

I if it has the same meaning for each (e.g., shared), no problem
I otherwise, undefined behavior

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 12



Clauses for the for loop directive

I private(v1,v2,...)
I make a shared variable private for the duration of the loop

I firstprivate(v1,v2,...)
I make a variable private and initialize it in every thread

I lastprivate(v1,v2,...)
I make a variable private and copy the final value of variable in the last iteration back to the

shared variable at end

I reduction(...)
I apply some associative and commutative operation (like +) across all iterations for some

variable

I ordered: declares that an ordered construct may occur in loop body

I schedule: options to control how iterations are distributed to threads

I nowait: remove the barrier at the end of the loop

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 13



Clauses for the for loop directive

I private(v1,v2,...)
I make a shared variable private for the duration of the loop

I firstprivate(v1,v2,...)
I make a variable private and initialize it in every thread

I lastprivate(v1,v2,...)
I make a variable private and copy the final value of variable in the last iteration back to the

shared variable at end

I reduction(...)
I apply some associative and commutative operation (like +) across all iterations for some

variable

I ordered: declares that an ordered construct may occur in loop body

I schedule: options to control how iterations are distributed to threads

I nowait: remove the barrier at the end of the loop

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 13



Clauses for the for loop directive

I private(v1,v2,...)
I make a shared variable private for the duration of the loop

I firstprivate(v1,v2,...)
I make a variable private and initialize it in every thread

I lastprivate(v1,v2,...)
I make a variable private and copy the final value of variable in the last iteration back to the

shared variable at end

I reduction(...)
I apply some associative and commutative operation (like +) across all iterations for some

variable

I ordered: declares that an ordered construct may occur in loop body

I schedule: options to control how iterations are distributed to threads

I nowait: remove the barrier at the end of the loop

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 13



Clauses for the for loop directive

I private(v1,v2,...)
I make a shared variable private for the duration of the loop

I firstprivate(v1,v2,...)
I make a variable private and initialize it in every thread

I lastprivate(v1,v2,...)
I make a variable private and copy the final value of variable in the last iteration back to the

shared variable at end

I reduction(...)
I apply some associative and commutative operation (like +) across all iterations for some

variable

I ordered: declares that an ordered construct may occur in loop body

I schedule: options to control how iterations are distributed to threads

I nowait: remove the barrier at the end of the loop

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 13



Clauses for the for loop directive

I private(v1,v2,...)
I make a shared variable private for the duration of the loop

I firstprivate(v1,v2,...)
I make a variable private and initialize it in every thread

I lastprivate(v1,v2,...)
I make a variable private and copy the final value of variable in the last iteration back to the

shared variable at end

I reduction(...)
I apply some associative and commutative operation (like +) across all iterations for some

variable

I ordered: declares that an ordered construct may occur in loop body

I schedule: options to control how iterations are distributed to threads

I nowait: remove the barrier at the end of the loop

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 13



Clauses for the for loop directive

I private(v1,v2,...)
I make a shared variable private for the duration of the loop

I firstprivate(v1,v2,...)
I make a variable private and initialize it in every thread

I lastprivate(v1,v2,...)
I make a variable private and copy the final value of variable in the last iteration back to the

shared variable at end

I reduction(...)
I apply some associative and commutative operation (like +) across all iterations for some

variable

I ordered: declares that an ordered construct may occur in loop body

I schedule: options to control how iterations are distributed to threads

I nowait: remove the barrier at the end of the loop

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 13



Clauses for the for loop directive

I private(v1,v2,...)
I make a shared variable private for the duration of the loop

I firstprivate(v1,v2,...)
I make a variable private and initialize it in every thread

I lastprivate(v1,v2,...)
I make a variable private and copy the final value of variable in the last iteration back to the

shared variable at end

I reduction(...)
I apply some associative and commutative operation (like +) across all iterations for some

variable

I ordered: declares that an ordered construct may occur in loop body

I schedule: options to control how iterations are distributed to threads

I nowait: remove the barrier at the end of the loop

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 13



Clauses for the for loop directive

I private(v1,v2,...)
I make a shared variable private for the duration of the loop

I firstprivate(v1,v2,...)
I make a variable private and initialize it in every thread

I lastprivate(v1,v2,...)
I make a variable private and copy the final value of variable in the last iteration back to the

shared variable at end

I reduction(...)
I apply some associative and commutative operation (like +) across all iterations for some

variable

I ordered: declares that an ordered construct may occur in loop body

I schedule: options to control how iterations are distributed to threads

I nowait: remove the barrier at the end of the loop

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 13



Clauses for the for loop directive, cont.

I collapse(n ): apply directive to next n loops in a loop nest

I n is an expression that evaluates to a positive integer
I iteration space of the n loops is collapsed into a single space
I the iterations in the resulting space are distributed to threads
I all initializers, incremeters, and conditions must be invariant under all loops

I i.e., they must remain constant throughout the entire loop nest

Correct:

#pragma omp for collapse(2)

for (i=0; i<n; i++)

for (j=0; j<m; j++)

a[i][j] = 2*b[i][j];

Incorrect:

#pragma omp for collapse(2)

for (i=0; i<n; i++)

for (j=i; j<m; j++)

a[i][j] = 2*b[i][j];

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 14



Clauses for the for loop directive, cont.

I collapse(n ): apply directive to next n loops in a loop nest
I n is an expression that evaluates to a positive integer
I iteration space of the n loops is collapsed into a single space
I the iterations in the resulting space are distributed to threads
I all initializers, incremeters, and conditions must be invariant under all loops

I i.e., they must remain constant throughout the entire loop nest

Correct:

#pragma omp for collapse(2)

for (i=0; i<n; i++)

for (j=0; j<m; j++)

a[i][j] = 2*b[i][j];

Incorrect:

#pragma omp for collapse(2)

for (i=0; i<n; i++)

for (j=i; j<m; j++)

a[i][j] = 2*b[i][j];

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 14



Clauses for the for loop directive, cont.

I collapse(n ): apply directive to next n loops in a loop nest
I n is an expression that evaluates to a positive integer
I iteration space of the n loops is collapsed into a single space
I the iterations in the resulting space are distributed to threads
I all initializers, incremeters, and conditions must be invariant under all loops

I i.e., they must remain constant throughout the entire loop nest

Correct:

#pragma omp for collapse(2)

for (i=0; i<n; i++)

for (j=0; j<m; j++)

a[i][j] = 2*b[i][j];

Incorrect:

#pragma omp for collapse(2)

for (i=0; i<n; i++)

for (j=i; j<m; j++)

a[i][j] = 2*b[i][j];

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 14



Clauses for the for loop directive, cont.

I collapse(n ): apply directive to next n loops in a loop nest
I n is an expression that evaluates to a positive integer
I iteration space of the n loops is collapsed into a single space
I the iterations in the resulting space are distributed to threads
I all initializers, incremeters, and conditions must be invariant under all loops

I i.e., they must remain constant throughout the entire loop nest

Correct:

#pragma omp for collapse(2)

for (i=0; i<n; i++)

for (j=0; j<m; j++)

a[i][j] = 2*b[i][j];

Incorrect:

#pragma omp for collapse(2)

for (i=0; i<n; i++)

for (j=i; j<m; j++)

a[i][j] = 2*b[i][j];

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 14



Question 1

Assume a and b are disjoint arrays.
Can this loop be parallelized with an OpenMP for construct?

for (i=0; i<n && a[i]>0; i++)

b[i] = b[i] - a[i];

No (non-standard condition)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 15



Question 1

Assume a and b are disjoint arrays.
Can this loop be parallelized with an OpenMP for construct?

for (i=0; i<n && a[i]>0; i++)

b[i] = b[i] - a[i];

No (non-standard condition)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 15



Question 2

Assume a and b are disjoint arrays.
Can this loop be parallelized with an OpenMP for construct?

for (i=1; i<n; i++)

b[i] = b[i] - a[i] + b[i-1] - a[i-1]

No (data race)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 16



Question 2

Assume a and b are disjoint arrays.
Can this loop be parallelized with an OpenMP for construct?

for (i=1; i<n; i++)

b[i] = b[i] - a[i] + b[i-1] - a[i-1]

No (data race)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 16



Question 3

Assume a, b, and c are disjoint arrays.
Can this loop be parallelized with an OpenMP for construct?

for (i=1; i<n; i++)

c[i] = b[i] - a[i] + b[i-1] - a[i-1]

Yes

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 17



Question 3

Assume a, b, and c are disjoint arrays.
Can this loop be parallelized with an OpenMP for construct?

for (i=1; i<n; i++)

c[i] = b[i] - a[i] + b[i-1] - a[i-1]

Yes

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 17



Question 4

Can this loop be parallelized with an OpenMP for construct?

for (i=1; i<n; i+=k)

c[i] = b[i] - a[i] + b[i-1] - a[i-1]

Yes

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 18



Question 4

Can this loop be parallelized with an OpenMP for construct?

for (i=1; i<n; i+=k)

c[i] = b[i] - a[i] + b[i-1] - a[i-1]

Yes

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 2 18


