
CISC 372: Parallel Computing
OpenMP, Part 3

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware



OpenMP worksharing directives

Recall:

I used to divide up work among threads
I kinds of work-sharing constructs

I for loops: distribute iterations to team members
I sections: distribute independent code bocks (work units)
I single: let only one thread execute a block

We left off looking at different clauses that can be used with the omp for directive.

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 2



Reductions: reduction(reduction-identifier : list )

I this is another clause that can be added to an omp for directive

I performs an (approximately) associative and commutative operation across all threads

I each variable v in the list should be a shared variable

I v should be initialized before entering the loop

I effectively, a private copy of v is created
I each private v is initialized to the default initial value corresponding to the operation

I 0 for +, 1 for ∗, etc.

I all operations in loop body take place on the private copies
I when a thread finishes its iterations:

I it adds (or whatever the operation is) its private value back to the shared v
I this happens atomically to prevent races

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 3



Reductions: reduction(reduction-identifier : list )

I this is another clause that can be added to an omp for directive

I performs an (approximately) associative and commutative operation across all threads

I each variable v in the list should be a shared variable

I v should be initialized before entering the loop

I effectively, a private copy of v is created
I each private v is initialized to the default initial value corresponding to the operation

I 0 for +, 1 for ∗, etc.

I all operations in loop body take place on the private copies
I when a thread finishes its iterations:

I it adds (or whatever the operation is) its private value back to the shared v
I this happens atomically to prevent races

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 3



Reductions: reduction(reduction-identifier : list )

I this is another clause that can be added to an omp for directive

I performs an (approximately) associative and commutative operation across all threads

I each variable v in the list should be a shared variable

I v should be initialized before entering the loop

I effectively, a private copy of v is created
I each private v is initialized to the default initial value corresponding to the operation

I 0 for +, 1 for ∗, etc.

I all operations in loop body take place on the private copies
I when a thread finishes its iterations:

I it adds (or whatever the operation is) its private value back to the shared v
I this happens atomically to prevent races

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 3



Reductions: reduction(reduction-identifier : list )

I this is another clause that can be added to an omp for directive

I performs an (approximately) associative and commutative operation across all threads

I each variable v in the list should be a shared variable

I v should be initialized before entering the loop

I effectively, a private copy of v is created
I each private v is initialized to the default initial value corresponding to the operation

I 0 for +, 1 for ∗, etc.

I all operations in loop body take place on the private copies
I when a thread finishes its iterations:

I it adds (or whatever the operation is) its private value back to the shared v
I this happens atomically to prevent races

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 3



Reductions: reduction(reduction-identifier : list )

I this is another clause that can be added to an omp for directive

I performs an (approximately) associative and commutative operation across all threads

I each variable v in the list should be a shared variable

I v should be initialized before entering the loop

I effectively, a private copy of v is created
I each private v is initialized to the default initial value corresponding to the operation

I 0 for +, 1 for ∗, etc.

I all operations in loop body take place on the private copies
I when a thread finishes its iterations:

I it adds (or whatever the operation is) its private value back to the shared v
I this happens atomically to prevent races

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 3



Reductions: reduction(reduction-identifier : list )

I this is another clause that can be added to an omp for directive

I performs an (approximately) associative and commutative operation across all threads

I each variable v in the list should be a shared variable

I v should be initialized before entering the loop

I effectively, a private copy of v is created

I each private v is initialized to the default initial value corresponding to the operation
I 0 for +, 1 for ∗, etc.

I all operations in loop body take place on the private copies
I when a thread finishes its iterations:

I it adds (or whatever the operation is) its private value back to the shared v
I this happens atomically to prevent races

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 3



Reductions: reduction(reduction-identifier : list )

I this is another clause that can be added to an omp for directive

I performs an (approximately) associative and commutative operation across all threads

I each variable v in the list should be a shared variable

I v should be initialized before entering the loop

I effectively, a private copy of v is created
I each private v is initialized to the default initial value corresponding to the operation

I 0 for +, 1 for ∗, etc.

I all operations in loop body take place on the private copies
I when a thread finishes its iterations:

I it adds (or whatever the operation is) its private value back to the shared v
I this happens atomically to prevent races

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 3



Reductions: reduction(reduction-identifier : list )

I this is another clause that can be added to an omp for directive

I performs an (approximately) associative and commutative operation across all threads

I each variable v in the list should be a shared variable

I v should be initialized before entering the loop

I effectively, a private copy of v is created
I each private v is initialized to the default initial value corresponding to the operation

I 0 for +, 1 for ∗, etc.

I all operations in loop body take place on the private copies

I when a thread finishes its iterations:
I it adds (or whatever the operation is) its private value back to the shared v
I this happens atomically to prevent races

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 3



Reductions: reduction(reduction-identifier : list )

I this is another clause that can be added to an omp for directive

I performs an (approximately) associative and commutative operation across all threads

I each variable v in the list should be a shared variable

I v should be initialized before entering the loop

I effectively, a private copy of v is created
I each private v is initialized to the default initial value corresponding to the operation

I 0 for +, 1 for ∗, etc.

I all operations in loop body take place on the private copies
I when a thread finishes its iterations:

I it adds (or whatever the operation is) its private value back to the shared v
I this happens atomically to prevent races

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 3



Reduction example: reduce.c

#include <stdio.h>

#include <omp.h>

#define n 10

int a[n], s=1000000;

int main() {

printf("Start s = %d\n", s);

#pragma omp parallel default(none) shared(a,s)

{

int tid = omp_get_thread_num();

#pragma omp for

for (int i=0; i<n; i++) a[i] = i;

#pragma omp for reduction(+:s) schedule(static,1)

for (int i=0; i<n; i++) {

s+=a[i];

printf("Local s on thread %d = %d\n", tid, s);

}

}

printf("Final s = %d\n", s);

}

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 4



Reduction example: output

omp$ make reduce

cc -fopenmp -o reduce.exec reduce.c

./reduce.exec

Start s = 1000000

Local s on thread 0 = 0

Local s on thread 0 = 2

Local s on thread 0 = 6

Local s on thread 0 = 12

Local s on thread 0 = 20

Local s on thread 1 = 1

Local s on thread 1 = 4

Local s on thread 1 = 9

Local s on thread 1 = 16

Local s on thread 1 = 25

Final s = 1000045

omp$

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 5



Reduction operations

operation operator initial value

addition + 0
multiplication * 1
subtraction (?) - 0
bitwise and & ~0

bitwise or | 0
bitwise exclusive or ^ 0
logical and && 1
logical or || 0

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 6



Controlling loop schedules: schedule(static, chunk_size )

I iterations are partitioned into chunks of size chunk_size

I chunks are distributed in round-robin order to threads

I last chunk may be smaller

I distribution is “static”: determined upon reaching the loop
I you can omit chunk_size

I iteration space divided into chunks of approximately equal size
I at most one chunk given to each thread

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 7



Controlling loop schedules: schedule(static, chunk_size )

I iterations are partitioned into chunks of size chunk_size

I chunks are distributed in round-robin order to threads

I last chunk may be smaller

I distribution is “static”: determined upon reaching the loop
I you can omit chunk_size

I iteration space divided into chunks of approximately equal size
I at most one chunk given to each thread

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 7



Controlling loop schedules: schedule(static, chunk_size )

I iterations are partitioned into chunks of size chunk_size

I chunks are distributed in round-robin order to threads

I last chunk may be smaller

I distribution is “static”: determined upon reaching the loop
I you can omit chunk_size

I iteration space divided into chunks of approximately equal size
I at most one chunk given to each thread

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 7



Controlling loop schedules: schedule(static, chunk_size )

I iterations are partitioned into chunks of size chunk_size

I chunks are distributed in round-robin order to threads

I last chunk may be smaller

I distribution is “static”: determined upon reaching the loop
I you can omit chunk_size

I iteration space divided into chunks of approximately equal size
I at most one chunk given to each thread

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 7



Controlling loop schedules: schedule(static, chunk_size )

I iterations are partitioned into chunks of size chunk_size

I chunks are distributed in round-robin order to threads

I last chunk may be smaller

I distribution is “static”: determined upon reaching the loop

I you can omit chunk_size
I iteration space divided into chunks of approximately equal size
I at most one chunk given to each thread

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 7



Controlling loop schedules: schedule(static, chunk_size )

I iterations are partitioned into chunks of size chunk_size

I chunks are distributed in round-robin order to threads

I last chunk may be smaller

I distribution is “static”: determined upon reaching the loop
I you can omit chunk_size

I iteration space divided into chunks of approximately equal size
I at most one chunk given to each thread

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 7



Controlling loop schedules: schedule(dynamic, chunk_size )

I iterations are partitioned into chunks of size chunk_size
I chunks are distributed to threads as they request them

I similar to the “manager-worker” pattern
I as soon as a thread completes its chunk, it asks for a new one

I last chunk may be smaller

I advantageous when time to execute an iteration varies in an unpredictable way

I distribution is “dynamic”: determined as loop executes

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 8



Controlling loop schedules: schedule(dynamic, chunk_size )

I iterations are partitioned into chunks of size chunk_size

I chunks are distributed to threads as they request them
I similar to the “manager-worker” pattern
I as soon as a thread completes its chunk, it asks for a new one

I last chunk may be smaller

I advantageous when time to execute an iteration varies in an unpredictable way

I distribution is “dynamic”: determined as loop executes

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 8



Controlling loop schedules: schedule(dynamic, chunk_size )

I iterations are partitioned into chunks of size chunk_size
I chunks are distributed to threads as they request them

I similar to the “manager-worker” pattern
I as soon as a thread completes its chunk, it asks for a new one

I last chunk may be smaller

I advantageous when time to execute an iteration varies in an unpredictable way

I distribution is “dynamic”: determined as loop executes

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 8



Controlling loop schedules: schedule(dynamic, chunk_size )

I iterations are partitioned into chunks of size chunk_size
I chunks are distributed to threads as they request them

I similar to the “manager-worker” pattern
I as soon as a thread completes its chunk, it asks for a new one

I last chunk may be smaller

I advantageous when time to execute an iteration varies in an unpredictable way

I distribution is “dynamic”: determined as loop executes

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 8



Controlling loop schedules: schedule(dynamic, chunk_size )

I iterations are partitioned into chunks of size chunk_size
I chunks are distributed to threads as they request them

I similar to the “manager-worker” pattern
I as soon as a thread completes its chunk, it asks for a new one

I last chunk may be smaller

I advantageous when time to execute an iteration varies in an unpredictable way

I distribution is “dynamic”: determined as loop executes

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 8



Controlling loop schedules: schedule(dynamic, chunk_size )

I iterations are partitioned into chunks of size chunk_size
I chunks are distributed to threads as they request them

I similar to the “manager-worker” pattern
I as soon as a thread completes its chunk, it asks for a new one

I last chunk may be smaller

I advantageous when time to execute an iteration varies in an unpredictable way

I distribution is “dynamic”: determined as loop executes

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 8



Controlling loop schedules: schedule(guided, chunk_size )

I this is a variation on dynamic in which the chunk size decreases as execution proceeds
I size of chunk proportional to number of unassigned iterations divided by number of threads

I chunk_size is a lower bound on the size of a chunk
I for chunk_size = 1, size of a chunk decreases to 1
I for chunk_size = k > 1, all chunks other than last must contain at least k iterations

I motivation
I there is overhead to the manager-worker protocol
I bigger chunks → less overhead, but greater probability of leaving a thread idle
I compromise: increase granularity as iteration space gets smaller, when the chance of leaving a

thread idle is greater

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 9



Controlling loop schedules: schedule(guided, chunk_size )

I this is a variation on dynamic in which the chunk size decreases as execution proceeds

I size of chunk proportional to number of unassigned iterations divided by number of threads
I chunk_size is a lower bound on the size of a chunk
I for chunk_size = 1, size of a chunk decreases to 1
I for chunk_size = k > 1, all chunks other than last must contain at least k iterations

I motivation
I there is overhead to the manager-worker protocol
I bigger chunks → less overhead, but greater probability of leaving a thread idle
I compromise: increase granularity as iteration space gets smaller, when the chance of leaving a

thread idle is greater

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 9



Controlling loop schedules: schedule(guided, chunk_size )

I this is a variation on dynamic in which the chunk size decreases as execution proceeds
I size of chunk proportional to number of unassigned iterations divided by number of threads

I chunk_size is a lower bound on the size of a chunk
I for chunk_size = 1, size of a chunk decreases to 1
I for chunk_size = k > 1, all chunks other than last must contain at least k iterations

I motivation
I there is overhead to the manager-worker protocol
I bigger chunks → less overhead, but greater probability of leaving a thread idle
I compromise: increase granularity as iteration space gets smaller, when the chance of leaving a

thread idle is greater

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 9



Controlling loop schedules: schedule(guided, chunk_size )

I this is a variation on dynamic in which the chunk size decreases as execution proceeds
I size of chunk proportional to number of unassigned iterations divided by number of threads

I chunk_size is a lower bound on the size of a chunk
I for chunk_size = 1, size of a chunk decreases to 1
I for chunk_size = k > 1, all chunks other than last must contain at least k iterations

I motivation
I there is overhead to the manager-worker protocol
I bigger chunks → less overhead, but greater probability of leaving a thread idle
I compromise: increase granularity as iteration space gets smaller, when the chance of leaving a

thread idle is greater

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 9



Controlling loop schedules: schedule(guided, chunk_size )

I this is a variation on dynamic in which the chunk size decreases as execution proceeds
I size of chunk proportional to number of unassigned iterations divided by number of threads

I chunk_size is a lower bound on the size of a chunk
I for chunk_size = 1, size of a chunk decreases to 1
I for chunk_size = k > 1, all chunks other than last must contain at least k iterations

I motivation
I there is overhead to the manager-worker protocol

I bigger chunks → less overhead, but greater probability of leaving a thread idle
I compromise: increase granularity as iteration space gets smaller, when the chance of leaving a

thread idle is greater

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 9



Controlling loop schedules: schedule(guided, chunk_size )

I this is a variation on dynamic in which the chunk size decreases as execution proceeds
I size of chunk proportional to number of unassigned iterations divided by number of threads

I chunk_size is a lower bound on the size of a chunk
I for chunk_size = 1, size of a chunk decreases to 1
I for chunk_size = k > 1, all chunks other than last must contain at least k iterations

I motivation
I there is overhead to the manager-worker protocol
I bigger chunks → less overhead, but greater probability of leaving a thread idle

I compromise: increase granularity as iteration space gets smaller, when the chance of leaving a
thread idle is greater

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 9



Controlling loop schedules: schedule(guided, chunk_size )

I this is a variation on dynamic in which the chunk size decreases as execution proceeds
I size of chunk proportional to number of unassigned iterations divided by number of threads

I chunk_size is a lower bound on the size of a chunk
I for chunk_size = 1, size of a chunk decreases to 1
I for chunk_size = k > 1, all chunks other than last must contain at least k iterations

I motivation
I there is overhead to the manager-worker protocol
I bigger chunks → less overhead, but greater probability of leaving a thread idle
I compromise: increase granularity as iteration space gets smaller, when the chance of leaving a

thread idle is greater

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 9



To wait or not to wait?

I use of nowait clause in for directive removes the implicit barrier at end of loop

I this can increase concurrency, and performance
I but can also introduce bugs

I use with extreme caution
I make sure it does not introduce data races

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 10



To wait or not to wait?

I use of nowait clause in for directive removes the implicit barrier at end of loop

I this can increase concurrency, and performance
I but can also introduce bugs

I use with extreme caution
I make sure it does not introduce data races

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 10



To wait or not to wait?

I use of nowait clause in for directive removes the implicit barrier at end of loop

I this can increase concurrency, and performance

I but can also introduce bugs
I use with extreme caution
I make sure it does not introduce data races

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 10



To wait or not to wait?

I use of nowait clause in for directive removes the implicit barrier at end of loop

I this can increase concurrency, and performance
I but can also introduce bugs

I use with extreme caution
I make sure it does not introduce data races

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 10



To wait or not to wait: wait1.c

int main () {

double a[n], b[n];

#pragma omp parallel default(none) shared(a,b)

{

#pragma omp for nowait

for (int i=0; i<n; i++)

a[i] = 2.0*i;

#pragma omp for

for (int i=0; i<n; i++)

b[i] = 3.0*i;

} /* end of parallel region */

for (int i=0; i<n; i++) {

if (a[i]!=2.0*i) { printf("Error at a[%d]: %f\n", i, a[i]); fflush(stdout); exit(1); }

if (b[i]!=3.0*i) { printf("Error at b[%d]: %f\n", i, b[i]); fflush(stdout); exit(1); }

}

printf("Success\n");

}

I OK: the two loops can execute concurrently since they update distinct variables

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 11



To wait or not to wait: wait1.c

int main () {

double a[n], b[n];

#pragma omp parallel default(none) shared(a,b)

{

#pragma omp for nowait

for (int i=0; i<n; i++)

a[i] = 2.0*i;

#pragma omp for

for (int i=0; i<n; i++)

b[i] = 3.0*i;

} /* end of parallel region */

for (int i=0; i<n; i++) {

if (a[i]!=2.0*i) { printf("Error at a[%d]: %f\n", i, a[i]); fflush(stdout); exit(1); }

if (b[i]!=3.0*i) { printf("Error at b[%d]: %f\n", i, b[i]); fflush(stdout); exit(1); }

}

printf("Success\n");

}

I OK: the two loops can execute concurrently since they update distinct variables
S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 11



To wait or not to wait: wait2.c

int main() {

double a[n], b[n];

#pragma omp parallel default(none) shared(a,b)

{

#pragma omp for nowait

for (int i=0; i<n; i++) a[i] = 2.0*i;

#pragma omp for

for (int i=0; i<n; i++) b[i] = 2.0*a[n-i-1];

} /* end of parallel region */

for (int i=0; i<n; i++) {

if (a[i] != 2.0*i) {

printf("Error at a[%d]: %f\n", i, a[i]); fflush(stdout); exit(1);

}

if (b[i] != 2.0*(2.0*(n-i-1))) {

printf("Error at b[%d]: %f\n", i, b[i]); fflush(stdout); exit(1);

}

}

printf("Success 2\n");

}

I NOT OK: second
loop reads
variables assigned
in the first loop.
Run it, and then
run wait2_fix.c.

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 12



To wait or not to wait: wait2.c

int main() {

double a[n], b[n];

#pragma omp parallel default(none) shared(a,b)

{

#pragma omp for nowait

for (int i=0; i<n; i++) a[i] = 2.0*i;

#pragma omp for

for (int i=0; i<n; i++) b[i] = 2.0*a[n-i-1];

} /* end of parallel region */

for (int i=0; i<n; i++) {

if (a[i] != 2.0*i) {

printf("Error at a[%d]: %f\n", i, a[i]); fflush(stdout); exit(1);

}

if (b[i] != 2.0*(2.0*(n-i-1))) {

printf("Error at b[%d]: %f\n", i, b[i]); fflush(stdout); exit(1);

}

}

printf("Success 2\n");

}

I NOT OK: second
loop reads
variables assigned
in the first loop.
Run it, and then
run wait2_fix.c.

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 12



Worksharing constructs: sections

#pragma omp sections

{

#pragma omp section

...
#pragma omp section

...
...

}

I specifies explicit code blocks which can execute in parallel

I each block (or section) is executed once, by exactly one thread

I a thread may execute several sections, or no sections

I in general: you cannot assume anything about how sections are distributed to threads

I barrier at end (unless overridden with nowait)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 13



Worksharing constructs: sections

#pragma omp sections

{

#pragma omp section

...
#pragma omp section

...
...

}

I specifies explicit code blocks which can execute in parallel

I each block (or section) is executed once, by exactly one thread

I a thread may execute several sections, or no sections

I in general: you cannot assume anything about how sections are distributed to threads

I barrier at end (unless overridden with nowait)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 13



Worksharing constructs: sections

#pragma omp sections

{

#pragma omp section

...
#pragma omp section

...
...

}

I specifies explicit code blocks which can execute in parallel

I each block (or section) is executed once, by exactly one thread

I a thread may execute several sections, or no sections

I in general: you cannot assume anything about how sections are distributed to threads

I barrier at end (unless overridden with nowait)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 13



Worksharing constructs: sections

#pragma omp sections

{

#pragma omp section

...
#pragma omp section

...
...

}

I specifies explicit code blocks which can execute in parallel

I each block (or section) is executed once, by exactly one thread

I a thread may execute several sections, or no sections

I in general: you cannot assume anything about how sections are distributed to threads

I barrier at end (unless overridden with nowait)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 13



Worksharing constructs: sections

#pragma omp sections

{

#pragma omp section

...
#pragma omp section

...
...

}

I specifies explicit code blocks which can execute in parallel

I each block (or section) is executed once, by exactly one thread

I a thread may execute several sections, or no sections

I in general: you cannot assume anything about how sections are distributed to threads

I barrier at end (unless overridden with nowait)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 13



Worksharing constructs: sections

#pragma omp sections

{

#pragma omp section

...
#pragma omp section

...
...

}

I specifies explicit code blocks which can execute in parallel

I each block (or section) is executed once, by exactly one thread

I a thread may execute several sections, or no sections

I in general: you cannot assume anything about how sections are distributed to threads

I barrier at end (unless overridden with nowait)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 13



Worksharing constructs: sections

#pragma omp sections

{

#pragma omp section

...
#pragma omp section

...
...

}

I specifies explicit code blocks which can execute in parallel

I each block (or section) is executed once, by exactly one thread

I a thread may execute several sections, or no sections

I in general: you cannot assume anything about how sections are distributed to threads

I barrier at end (unless overridden with nowait)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 13



sections example: sections.c, part 1

#include <stdio.h>

#include <omp.h>

#include <limits.h>

#define N 20

typedef unsigned long ulong;

ulong sumUpTo(int n) {

ulong s=0;

for (int i=1; i<=n; i++) s+=i;

return s;

}

ulong productUpTo(int n) {

ulong p=1;

for (int i=1; i<=n; i++) p*=i;

return p;

}

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 14



sections example: sections.c, part 2

int main() {

#pragma omp parallel

{ /* begin parallel region */

int tid = omp_get_thread_num();

if (tid == 0) printf("Number of threads: %d\n", omp_get_num_threads());

#pragma omp sections

{ /* begin sections */

#pragma omp section

{

printf("Thread %d: sum to %d ........... %lu\n", tid, N, sumUpTo(N));

}

#pragma omp section

{

printf("Thread %d: product to %d ....... %lu\n", tid, N, productUpTo(N));

}

} /* end of sections */

} /* end of parallel region */

}

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 15



Clauses allowed with sections

I private(list)
I each section has its own private copy of variable

I firstprivate(list)
I make private and initialize with shared variable value

I lastprivate(list)
I value of private copy of variable in last section is copied to shared variable at end

I reduction(reduction-identifier:list)
I reduction applied across all sections

I nowait
I removes barrier at end

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 16



Worksharing constructs: single

#pragma omp single

S

I indicates that you want only one thread in the team to execute S
I you don’t care which thread

I barrier at end (unless overridden with nowait)

I typical use: initialization of shared variable

Clauses:

I private(list), firstprivate(list), nowait: usual semantics
I copyprivate(list)

I applies to private variables
I copies final value of variable in the single thread to corresponding variables in all other threads
I copy occurs at end, before threads leave the barrier

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 17



Worksharing constructs: single

#pragma omp single

S

I indicates that you want only one thread in the team to execute S
I you don’t care which thread

I barrier at end (unless overridden with nowait)

I typical use: initialization of shared variable

Clauses:

I private(list), firstprivate(list), nowait: usual semantics
I copyprivate(list)

I applies to private variables
I copies final value of variable in the single thread to corresponding variables in all other threads
I copy occurs at end, before threads leave the barrier

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 17



Worksharing constructs: single

#pragma omp single

S

I indicates that you want only one thread in the team to execute S
I you don’t care which thread

I barrier at end (unless overridden with nowait)

I typical use: initialization of shared variable

Clauses:

I private(list), firstprivate(list), nowait: usual semantics
I copyprivate(list)

I applies to private variables
I copies final value of variable in the single thread to corresponding variables in all other threads
I copy occurs at end, before threads leave the barrier

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 17



Worksharing constructs: single

#pragma omp single

S

I indicates that you want only one thread in the team to execute S
I you don’t care which thread

I barrier at end (unless overridden with nowait)

I typical use: initialization of shared variable

Clauses:

I private(list), firstprivate(list), nowait: usual semantics
I copyprivate(list)

I applies to private variables
I copies final value of variable in the single thread to corresponding variables in all other threads
I copy occurs at end, before threads leave the barrier

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 17



Worksharing constructs: single

#pragma omp single

S

I indicates that you want only one thread in the team to execute S
I you don’t care which thread

I barrier at end (unless overridden with nowait)

I typical use: initialization of shared variable

Clauses:

I private(list), firstprivate(list), nowait: usual semantics
I copyprivate(list)

I applies to private variables
I copies final value of variable in the single thread to corresponding variables in all other threads
I copy occurs at end, before threads leave the barrier

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 17



Worksharing constructs: single

#pragma omp single

S

I indicates that you want only one thread in the team to execute S
I you don’t care which thread

I barrier at end (unless overridden with nowait)

I typical use: initialization of shared variable

Clauses:

I private(list), firstprivate(list), nowait: usual semantics

I copyprivate(list)
I applies to private variables
I copies final value of variable in the single thread to corresponding variables in all other threads
I copy occurs at end, before threads leave the barrier

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 17



Worksharing constructs: single

#pragma omp single

S

I indicates that you want only one thread in the team to execute S
I you don’t care which thread

I barrier at end (unless overridden with nowait)

I typical use: initialization of shared variable

Clauses:

I private(list), firstprivate(list), nowait: usual semantics
I copyprivate(list)

I applies to private variables
I copies final value of variable in the single thread to corresponding variables in all other threads
I copy occurs at end, before threads leave the barrier

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 3 17


