
CISC 372: Parallel Computing
OpenMP, Part 4

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

Synchronization constructs

These constructs control synchronization among threads.

I barrier

I ordered

I critical

I atomic

I master

Note:

I except for barrier, these do not impose barriers

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 2

Synchronization constructs

These constructs control synchronization among threads.

I barrier

I ordered

I critical

I atomic

I master

Note:

I except for barrier, these do not impose barriers

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 2

Synchronization constructs

These constructs control synchronization among threads.

I barrier

I ordered

I critical

I atomic

I master

Note:

I except for barrier, these do not impose barriers

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 2

Synchronization constructs

These constructs control synchronization among threads.

I barrier

I ordered

I critical

I atomic

I master

Note:

I except for barrier, these do not impose barriers

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 2

Synchronization constructs

These constructs control synchronization among threads.

I barrier

I ordered

I critical

I atomic

I master

Note:

I except for barrier, these do not impose barriers

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 2

Synchronization constructs

These constructs control synchronization among threads.

I barrier

I ordered

I critical

I atomic

I master

Note:

I except for barrier, these do not impose barriers

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 2

Synchronization constructs

These constructs control synchronization among threads.

I barrier

I ordered

I critical

I atomic

I master

Note:

I except for barrier, these do not impose barriers

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 2

Synchronization constructs

These constructs control synchronization among threads.

I barrier

I ordered

I critical

I atomic

I master

Note:

I except for barrier, these do not impose barriers

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 2

Synchronization constructs: barrier

#pragma omp barrier

I a stand-alone construct: does not modify subsequent block

I all threads in a team block until every thread in team has reached the barrier

I all threads in a team must encounter the same sequence of worksharing and barrier
constructs

I note most constructs already impose a barrier at end
I so explicit barrier is usually unnecessary

I main use: control accesses to shared variables to avoid data races
I e.g., one thread writes, barrier, other threads read

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 3

Synchronization constructs: barrier

#pragma omp barrier

I a stand-alone construct: does not modify subsequent block

I all threads in a team block until every thread in team has reached the barrier

I all threads in a team must encounter the same sequence of worksharing and barrier
constructs

I note most constructs already impose a barrier at end
I so explicit barrier is usually unnecessary

I main use: control accesses to shared variables to avoid data races
I e.g., one thread writes, barrier, other threads read

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 3

Synchronization constructs: barrier

#pragma omp barrier

I a stand-alone construct: does not modify subsequent block

I all threads in a team block until every thread in team has reached the barrier

I all threads in a team must encounter the same sequence of worksharing and barrier
constructs

I note most constructs already impose a barrier at end
I so explicit barrier is usually unnecessary

I main use: control accesses to shared variables to avoid data races
I e.g., one thread writes, barrier, other threads read

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 3

Synchronization constructs: barrier

#pragma omp barrier

I a stand-alone construct: does not modify subsequent block

I all threads in a team block until every thread in team has reached the barrier

I all threads in a team must encounter the same sequence of worksharing and barrier
constructs

I note most constructs already impose a barrier at end
I so explicit barrier is usually unnecessary

I main use: control accesses to shared variables to avoid data races
I e.g., one thread writes, barrier, other threads read

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 3

Synchronization constructs: barrier

#pragma omp barrier

I a stand-alone construct: does not modify subsequent block

I all threads in a team block until every thread in team has reached the barrier

I all threads in a team must encounter the same sequence of worksharing and barrier
constructs

I note most constructs already impose a barrier at end
I so explicit barrier is usually unnecessary

I main use: control accesses to shared variables to avoid data races
I e.g., one thread writes, barrier, other threads read

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 3

Synchronization constructs: barrier

#pragma omp barrier

I a stand-alone construct: does not modify subsequent block

I all threads in a team block until every thread in team has reached the barrier

I all threads in a team must encounter the same sequence of worksharing and barrier
constructs

I note most constructs already impose a barrier at end
I so explicit barrier is usually unnecessary

I main use: control accesses to shared variables to avoid data races
I e.g., one thread writes, barrier, other threads read

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 3

Synchronization constructs: ordered

#pragma omp ordered

S

I must occur inside an omp for loop using clause ordered

I the block S will be executed in iteration order
I write S[i] for execution of S in i-th iteration
I S[i] will complete before S[i+ 1] begins (i = 0, 1, . . .)

I this essentially forces iterations to execute sequentially
I except there can be some overlap of the non-ordered code

I typical use cases: print statements, debugging

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 4

Synchronization constructs: ordered

#pragma omp ordered

S

I must occur inside an omp for loop using clause ordered

I the block S will be executed in iteration order
I write S[i] for execution of S in i-th iteration
I S[i] will complete before S[i+ 1] begins (i = 0, 1, . . .)

I this essentially forces iterations to execute sequentially
I except there can be some overlap of the non-ordered code

I typical use cases: print statements, debugging

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 4

Synchronization constructs: ordered

#pragma omp ordered

S

I must occur inside an omp for loop using clause ordered

I the block S will be executed in iteration order
I write S[i] for execution of S in i-th iteration
I S[i] will complete before S[i+ 1] begins (i = 0, 1, . . .)

I this essentially forces iterations to execute sequentially
I except there can be some overlap of the non-ordered code

I typical use cases: print statements, debugging

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 4

Synchronization constructs: ordered

#pragma omp ordered

S

I must occur inside an omp for loop using clause ordered

I the block S will be executed in iteration order
I write S[i] for execution of S in i-th iteration
I S[i] will complete before S[i+ 1] begins (i = 0, 1, . . .)

I this essentially forces iterations to execute sequentially
I except there can be some overlap of the non-ordered code

I typical use cases: print statements, debugging

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 4

Synchronization constructs: ordered

#pragma omp ordered

S

I must occur inside an omp for loop using clause ordered

I the block S will be executed in iteration order
I write S[i] for execution of S in i-th iteration
I S[i] will complete before S[i+ 1] begins (i = 0, 1, . . .)

I this essentially forces iterations to execute sequentially
I except there can be some overlap of the non-ordered code

I typical use cases: print statements, debugging

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 4

Synchronization constructs: critical
#pragma omp critical [(name)]

S

I declares S to be a critical section

I at any time: at most one thread can be executing inside a critical region named name

I in order for a thread to start executing S:
I no other thread can be inside a critical region with same name as S

I other threads may execute concurrently
I as long as they are not in a critical region with same name as S

I name is optional
I all critical regions with no name are considered to have the same name, distinct from all

named critical regions

I common uses: printing, computation of max or min, . . .
I complex modifications to shared data

I don’t want any other thread to “see” the data in an intermediate state
I all threads access the data through critical regions with the same name
I very similar to use of locks or Java’s synchronized

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 5

Synchronization constructs: critical
#pragma omp critical [(name)]

S

I declares S to be a critical section

I at any time: at most one thread can be executing inside a critical region named name

I in order for a thread to start executing S:
I no other thread can be inside a critical region with same name as S

I other threads may execute concurrently
I as long as they are not in a critical region with same name as S

I name is optional
I all critical regions with no name are considered to have the same name, distinct from all

named critical regions

I common uses: printing, computation of max or min, . . .
I complex modifications to shared data

I don’t want any other thread to “see” the data in an intermediate state
I all threads access the data through critical regions with the same name
I very similar to use of locks or Java’s synchronized

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 5

Synchronization constructs: critical
#pragma omp critical [(name)]

S

I declares S to be a critical section

I at any time: at most one thread can be executing inside a critical region named name

I in order for a thread to start executing S:
I no other thread can be inside a critical region with same name as S

I other threads may execute concurrently
I as long as they are not in a critical region with same name as S

I name is optional
I all critical regions with no name are considered to have the same name, distinct from all

named critical regions

I common uses: printing, computation of max or min, . . .
I complex modifications to shared data

I don’t want any other thread to “see” the data in an intermediate state
I all threads access the data through critical regions with the same name
I very similar to use of locks or Java’s synchronized

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 5

Synchronization constructs: critical
#pragma omp critical [(name)]

S

I declares S to be a critical section

I at any time: at most one thread can be executing inside a critical region named name

I in order for a thread to start executing S:
I no other thread can be inside a critical region with same name as S

I other threads may execute concurrently
I as long as they are not in a critical region with same name as S

I name is optional
I all critical regions with no name are considered to have the same name, distinct from all

named critical regions

I common uses: printing, computation of max or min, . . .
I complex modifications to shared data

I don’t want any other thread to “see” the data in an intermediate state
I all threads access the data through critical regions with the same name
I very similar to use of locks or Java’s synchronized

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 5

Synchronization constructs: critical
#pragma omp critical [(name)]

S

I declares S to be a critical section

I at any time: at most one thread can be executing inside a critical region named name

I in order for a thread to start executing S:
I no other thread can be inside a critical region with same name as S

I other threads may execute concurrently
I as long as they are not in a critical region with same name as S

I name is optional
I all critical regions with no name are considered to have the same name, distinct from all

named critical regions

I common uses: printing, computation of max or min, . . .
I complex modifications to shared data

I don’t want any other thread to “see” the data in an intermediate state
I all threads access the data through critical regions with the same name
I very similar to use of locks or Java’s synchronized

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 5

Synchronization constructs: critical
#pragma omp critical [(name)]

S

I declares S to be a critical section

I at any time: at most one thread can be executing inside a critical region named name

I in order for a thread to start executing S:
I no other thread can be inside a critical region with same name as S

I other threads may execute concurrently
I as long as they are not in a critical region with same name as S

I name is optional
I all critical regions with no name are considered to have the same name, distinct from all

named critical regions

I common uses: printing, computation of max or min, . . .
I complex modifications to shared data

I don’t want any other thread to “see” the data in an intermediate state
I all threads access the data through critical regions with the same name
I very similar to use of locks or Java’s synchronized

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 5

Synchronization constructs: critical
#pragma omp critical [(name)]

S

I declares S to be a critical section

I at any time: at most one thread can be executing inside a critical region named name

I in order for a thread to start executing S:
I no other thread can be inside a critical region with same name as S

I other threads may execute concurrently
I as long as they are not in a critical region with same name as S

I name is optional
I all critical regions with no name are considered to have the same name, distinct from all

named critical regions

I common uses: printing, computation of max or min, . . .

I complex modifications to shared data
I don’t want any other thread to “see” the data in an intermediate state
I all threads access the data through critical regions with the same name
I very similar to use of locks or Java’s synchronized

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 5

Synchronization constructs: critical
#pragma omp critical [(name)]

S

I declares S to be a critical section

I at any time: at most one thread can be executing inside a critical region named name

I in order for a thread to start executing S:
I no other thread can be inside a critical region with same name as S

I other threads may execute concurrently
I as long as they are not in a critical region with same name as S

I name is optional
I all critical regions with no name are considered to have the same name, distinct from all

named critical regions

I common uses: printing, computation of max or min, . . .
I complex modifications to shared data

I don’t want any other thread to “see” the data in an intermediate state
I all threads access the data through critical regions with the same name
I very similar to use of locks or Java’s synchronized

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 5

Synchronization constructs: atomic

#pragma omp atomic

S

I following statement executes in one atomic step

I no other threads can intervene

I S must be a simple assignment statement of a certain form (see OpenMP 4.0 Sec. 2.12.6)
I acceptable examples

I x++, x--, ++x, or --x
I x = x binop expr
I x binop = expr
I x = expr binop x

I binary operators: +, *, -, /, &, ^, |, <<, or >>

I no function calls or other kinds of expressions
I can be more efficient than critical

I can take advantage of low-level atomic operations

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 6

Synchronization constructs: atomic

#pragma omp atomic

S

I following statement executes in one atomic step

I no other threads can intervene

I S must be a simple assignment statement of a certain form (see OpenMP 4.0 Sec. 2.12.6)
I acceptable examples

I x++, x--, ++x, or --x
I x = x binop expr
I x binop = expr
I x = expr binop x

I binary operators: +, *, -, /, &, ^, |, <<, or >>

I no function calls or other kinds of expressions
I can be more efficient than critical

I can take advantage of low-level atomic operations

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 6

Synchronization constructs: atomic

#pragma omp atomic

S

I following statement executes in one atomic step

I no other threads can intervene

I S must be a simple assignment statement of a certain form (see OpenMP 4.0 Sec. 2.12.6)
I acceptable examples

I x++, x--, ++x, or --x
I x = x binop expr
I x binop = expr
I x = expr binop x

I binary operators: +, *, -, /, &, ^, |, <<, or >>

I no function calls or other kinds of expressions
I can be more efficient than critical

I can take advantage of low-level atomic operations

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 6

Synchronization constructs: atomic

#pragma omp atomic

S

I following statement executes in one atomic step

I no other threads can intervene

I S must be a simple assignment statement of a certain form (see OpenMP 4.0 Sec. 2.12.6)

I acceptable examples
I x++, x--, ++x, or --x
I x = x binop expr
I x binop = expr
I x = expr binop x

I binary operators: +, *, -, /, &, ^, |, <<, or >>

I no function calls or other kinds of expressions
I can be more efficient than critical

I can take advantage of low-level atomic operations

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 6

Synchronization constructs: atomic

#pragma omp atomic

S

I following statement executes in one atomic step

I no other threads can intervene

I S must be a simple assignment statement of a certain form (see OpenMP 4.0 Sec. 2.12.6)
I acceptable examples

I x++, x--, ++x, or --x
I x = x binop expr
I x binop = expr
I x = expr binop x

I binary operators: +, *, -, /, &, ^, |, <<, or >>

I no function calls or other kinds of expressions

I can be more efficient than critical
I can take advantage of low-level atomic operations

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 6

Synchronization constructs: atomic

#pragma omp atomic

S

I following statement executes in one atomic step

I no other threads can intervene

I S must be a simple assignment statement of a certain form (see OpenMP 4.0 Sec. 2.12.6)
I acceptable examples

I x++, x--, ++x, or --x
I x = x binop expr
I x binop = expr
I x = expr binop x

I binary operators: +, *, -, /, &, ^, |, <<, or >>

I no function calls or other kinds of expressions
I can be more efficient than critical

I can take advantage of low-level atomic operations
S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 6

Synchronization constructs: master

#pragma omp master

S

I the associated block is executed by only the master thread of the team

I no barrier
I similer to single, but recall:

I single can choose any thread (not just master)
I single has a barrier at end by default

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 7

Synchronization constructs: master

#pragma omp master

S

I the associated block is executed by only the master thread of the team

I no barrier
I similer to single, but recall:

I single can choose any thread (not just master)
I single has a barrier at end by default

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 7

Synchronization constructs: master

#pragma omp master

S

I the associated block is executed by only the master thread of the team

I no barrier

I similer to single, but recall:
I single can choose any thread (not just master)
I single has a barrier at end by default

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 7

Synchronization constructs: master

#pragma omp master

S

I the associated block is executed by only the master thread of the team

I no barrier
I similer to single, but recall:

I single can choose any thread (not just master)
I single has a barrier at end by default

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 7

OpenMP locks

I a type and functions to lock/unlock, similar to Pthread’s mutexes

I considered “lower-level” primitives than the directive-based constructs

I type: omp_lock_t

I functions
I void omp_init_lock(omp_lock_t *lock);
I void omp_destroy_lock(omp_lock_t *lock);
I void omp_set_lock(omp_lock_t *lock);
I void omp_unset_lock(omp_lock_t *lock);

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 8

OpenMP locks

I a type and functions to lock/unlock, similar to Pthread’s mutexes

I considered “lower-level” primitives than the directive-based constructs

I type: omp_lock_t

I functions
I void omp_init_lock(omp_lock_t *lock);
I void omp_destroy_lock(omp_lock_t *lock);
I void omp_set_lock(omp_lock_t *lock);
I void omp_unset_lock(omp_lock_t *lock);

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 8

OpenMP locks

I a type and functions to lock/unlock, similar to Pthread’s mutexes

I considered “lower-level” primitives than the directive-based constructs

I type: omp_lock_t

I functions
I void omp_init_lock(omp_lock_t *lock);
I void omp_destroy_lock(omp_lock_t *lock);
I void omp_set_lock(omp_lock_t *lock);
I void omp_unset_lock(omp_lock_t *lock);

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 8

OpenMP locks

I a type and functions to lock/unlock, similar to Pthread’s mutexes

I considered “lower-level” primitives than the directive-based constructs

I type: omp_lock_t

I functions
I void omp_init_lock(omp_lock_t *lock);
I void omp_destroy_lock(omp_lock_t *lock);
I void omp_set_lock(omp_lock_t *lock);
I void omp_unset_lock(omp_lock_t *lock);

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 8

OpenMP locks

I a type and functions to lock/unlock, similar to Pthread’s mutexes

I considered “lower-level” primitives than the directive-based constructs

I type: omp_lock_t

I functions
I void omp_init_lock(omp_lock_t *lock);
I void omp_destroy_lock(omp_lock_t *lock);
I void omp_set_lock(omp_lock_t *lock);
I void omp_unset_lock(omp_lock_t *lock);

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 8

The threadprivate directive

I consider the program semiprivate.c. What is the output?

#include <stdio.h>

#include <omp.h>

int x = 99;

void f() {

x=omp_get_thread_num();

}

int main() {

#pragma omp parallel private(x) num_threads(5)

{

int tid = omp_get_thread_num();

f();

printf("Thread %d: x = %d\n", tid, x);

}

printf("Final x = %d\n", x);

}

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 9

semiprivate.c: output

omp$ gcc-mp-4.8 -fopenmp semiprivate.c

omp$./a.out

Thread 1: x = -348111896

Thread 2: x = -348111896

Thread 3: x = -348111896

Thread 4: x = 19907219

Thread 0: x = 0

Final x = 0

omp$

Why?

I the private clause affects only references to the variable inside the construct (the static
extent), not the region (dynamic extent).

I if you want x to be private everywhere, you need to use the threadprivate directive.

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 10

semiprivate.c: output

omp$ gcc-mp-4.8 -fopenmp semiprivate.c

omp$./a.out

Thread 1: x = -348111896

Thread 2: x = -348111896

Thread 3: x = -348111896

Thread 4: x = 19907219

Thread 0: x = 0

Final x = 0

omp$

Why?

I the private clause affects only references to the variable inside the construct (the static
extent), not the region (dynamic extent).

I if you want x to be private everywhere, you need to use the threadprivate directive.

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 10

semiprivate.c: output

omp$ gcc-mp-4.8 -fopenmp semiprivate.c

omp$./a.out

Thread 1: x = -348111896

Thread 2: x = -348111896

Thread 3: x = -348111896

Thread 4: x = 19907219

Thread 0: x = 0

Final x = 0

omp$

Why?

I the private clause affects only references to the variable inside the construct (the static
extent), not the region (dynamic extent).

I if you want x to be private everywhere, you need to use the threadprivate directive.

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 10

threadprivate.c

#include <stdio.h>

#include <omp.h>

int x;

#pragma omp threadprivate(x)

void f() {

// this updates the private copy of x...

x=omp_get_thread_num();

}

int main() {

#pragma omp parallel num_threads(5)

{

int tid = omp_get_thread_num();

f();

printf("Thread %d: x = %d\n", tid, x);

}

printf("Final x = %d\n", x);

}

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 11

threadprivate.c: output

omp$./a.out

Thread 1: x = 1

Thread 2: x = 2

Thread 0: x = 0

Thread 3: x = 3

Thread 4: x = 4

Final x = 0

omp$

I use this when you have a global variable you wish to share between functions
I and you want it private

I you can even make the shared variable persist between parallel regions
I certain requirements must be met
I in particular, all the parallel regions in which variable is used must have same number of

threads

I note the variable must be initialized inside a parallel region before it is used

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 12

threadprivate.c: output

omp$./a.out

Thread 1: x = 1

Thread 2: x = 2

Thread 0: x = 0

Thread 3: x = 3

Thread 4: x = 4

Final x = 0

omp$

I use this when you have a global variable you wish to share between functions
I and you want it private

I you can even make the shared variable persist between parallel regions
I certain requirements must be met
I in particular, all the parallel regions in which variable is used must have same number of

threads

I note the variable must be initialized inside a parallel region before it is used

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 12

threadprivate.c: output

omp$./a.out

Thread 1: x = 1

Thread 2: x = 2

Thread 0: x = 0

Thread 3: x = 3

Thread 4: x = 4

Final x = 0

omp$

I use this when you have a global variable you wish to share between functions
I and you want it private

I you can even make the shared variable persist between parallel regions
I certain requirements must be met
I in particular, all the parallel regions in which variable is used must have same number of

threads

I note the variable must be initialized inside a parallel region before it is used

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 12

threadprivate.c: output

omp$./a.out

Thread 1: x = 1

Thread 2: x = 2

Thread 0: x = 0

Thread 3: x = 3

Thread 4: x = 4

Final x = 0

omp$

I use this when you have a global variable you wish to share between functions
I and you want it private

I you can even make the shared variable persist between parallel regions
I certain requirements must be met
I in particular, all the parallel regions in which variable is used must have same number of

threads

I note the variable must be initialized inside a parallel region before it is used

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 12

MPI/OpenMP hybrid programs

I for clusters of multicore nodes, you may
I use MPI everywhere: one MPI process per core, or
I use an MPI+threads “hybrid” model

I one MPI process per node
I threads within a node map to cores
I threads may be specified by Pthreads, OpenMP, or some other thread API

I advantages of “MPI everywhere”
I simpler
I re-use all your old MPI programs with no changes!
I performance often pretty good

I sends and receives within a node implemented using memcpy or similar

I advantages of MPI+threads
I might get better time performance
I often uses less memory

I in MPI everywhere, common data structures must be duplicated on every process, i.e., core
I in MPI+threads, need only one copy of data structure on each node

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 13

MPI/OpenMP hybrid programs

I for clusters of multicore nodes, you may
I use MPI everywhere: one MPI process per core, or

I use an MPI+threads “hybrid” model
I one MPI process per node
I threads within a node map to cores
I threads may be specified by Pthreads, OpenMP, or some other thread API

I advantages of “MPI everywhere”
I simpler
I re-use all your old MPI programs with no changes!
I performance often pretty good

I sends and receives within a node implemented using memcpy or similar

I advantages of MPI+threads
I might get better time performance
I often uses less memory

I in MPI everywhere, common data structures must be duplicated on every process, i.e., core
I in MPI+threads, need only one copy of data structure on each node

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 13

MPI/OpenMP hybrid programs

I for clusters of multicore nodes, you may
I use MPI everywhere: one MPI process per core, or
I use an MPI+threads “hybrid” model

I one MPI process per node
I threads within a node map to cores
I threads may be specified by Pthreads, OpenMP, or some other thread API

I advantages of “MPI everywhere”
I simpler
I re-use all your old MPI programs with no changes!
I performance often pretty good

I sends and receives within a node implemented using memcpy or similar

I advantages of MPI+threads
I might get better time performance
I often uses less memory

I in MPI everywhere, common data structures must be duplicated on every process, i.e., core
I in MPI+threads, need only one copy of data structure on each node

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 13

MPI/OpenMP hybrid programs

I for clusters of multicore nodes, you may
I use MPI everywhere: one MPI process per core, or
I use an MPI+threads “hybrid” model

I one MPI process per node
I threads within a node map to cores
I threads may be specified by Pthreads, OpenMP, or some other thread API

I advantages of “MPI everywhere”
I simpler
I re-use all your old MPI programs with no changes!
I performance often pretty good

I sends and receives within a node implemented using memcpy or similar

I advantages of MPI+threads
I might get better time performance
I often uses less memory

I in MPI everywhere, common data structures must be duplicated on every process, i.e., core
I in MPI+threads, need only one copy of data structure on each node

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 13

MPI/OpenMP hybrid programs

I for clusters of multicore nodes, you may
I use MPI everywhere: one MPI process per core, or
I use an MPI+threads “hybrid” model

I one MPI process per node
I threads within a node map to cores
I threads may be specified by Pthreads, OpenMP, or some other thread API

I advantages of “MPI everywhere”
I simpler
I re-use all your old MPI programs with no changes!
I performance often pretty good

I sends and receives within a node implemented using memcpy or similar

I advantages of MPI+threads
I might get better time performance
I often uses less memory

I in MPI everywhere, common data structures must be duplicated on every process, i.e., core
I in MPI+threads, need only one copy of data structure on each node

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 13

MPI with threads

I MPI does not have threads, but it does specify how MPI may interact with threads

I an MPI implementation may or may not be thread-compliant

I a process can request a certain level of thread support from MPI

I MPI will respond with the best thread support it can provide for that request

I different processes can request (and receive) different levels of support
I the interfaces for messages, etc., are the same whether or not there are multiple threads

I hence a message sent by one thread on process p looks exactly the same as a message sent by
another thread on p

I there is no way for another process to tell which thread it came from
I a message sent by p to another process q cannot target a particular thread on q
I to participate in a collective routine, only one thread in p should call the collective functions

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 14

MPI with threads

I MPI does not have threads, but it does specify how MPI may interact with threads

I an MPI implementation may or may not be thread-compliant

I a process can request a certain level of thread support from MPI

I MPI will respond with the best thread support it can provide for that request

I different processes can request (and receive) different levels of support
I the interfaces for messages, etc., are the same whether or not there are multiple threads

I hence a message sent by one thread on process p looks exactly the same as a message sent by
another thread on p

I there is no way for another process to tell which thread it came from
I a message sent by p to another process q cannot target a particular thread on q
I to participate in a collective routine, only one thread in p should call the collective functions

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 14

MPI with threads

I MPI does not have threads, but it does specify how MPI may interact with threads

I an MPI implementation may or may not be thread-compliant

I a process can request a certain level of thread support from MPI

I MPI will respond with the best thread support it can provide for that request

I different processes can request (and receive) different levels of support
I the interfaces for messages, etc., are the same whether or not there are multiple threads

I hence a message sent by one thread on process p looks exactly the same as a message sent by
another thread on p

I there is no way for another process to tell which thread it came from
I a message sent by p to another process q cannot target a particular thread on q
I to participate in a collective routine, only one thread in p should call the collective functions

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 14

MPI with threads

I MPI does not have threads, but it does specify how MPI may interact with threads

I an MPI implementation may or may not be thread-compliant

I a process can request a certain level of thread support from MPI

I MPI will respond with the best thread support it can provide for that request

I different processes can request (and receive) different levels of support
I the interfaces for messages, etc., are the same whether or not there are multiple threads

I hence a message sent by one thread on process p looks exactly the same as a message sent by
another thread on p

I there is no way for another process to tell which thread it came from
I a message sent by p to another process q cannot target a particular thread on q
I to participate in a collective routine, only one thread in p should call the collective functions

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 14

MPI with threads

I MPI does not have threads, but it does specify how MPI may interact with threads

I an MPI implementation may or may not be thread-compliant

I a process can request a certain level of thread support from MPI

I MPI will respond with the best thread support it can provide for that request

I different processes can request (and receive) different levels of support

I the interfaces for messages, etc., are the same whether or not there are multiple threads
I hence a message sent by one thread on process p looks exactly the same as a message sent by

another thread on p
I there is no way for another process to tell which thread it came from
I a message sent by p to another process q cannot target a particular thread on q
I to participate in a collective routine, only one thread in p should call the collective functions

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 14

MPI with threads

I MPI does not have threads, but it does specify how MPI may interact with threads

I an MPI implementation may or may not be thread-compliant

I a process can request a certain level of thread support from MPI

I MPI will respond with the best thread support it can provide for that request

I different processes can request (and receive) different levels of support
I the interfaces for messages, etc., are the same whether or not there are multiple threads

I hence a message sent by one thread on process p looks exactly the same as a message sent by
another thread on p

I there is no way for another process to tell which thread it came from
I a message sent by p to another process q cannot target a particular thread on q
I to participate in a collective routine, only one thread in p should call the collective functions

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 14

Four levels of thread support are specified

1. MPI_THREAD_SINGLE: only one thread will execute

2. MPI_THREAD_FUNNELED
I multiple threads may execute, but only the master thread will call MPI functions

3. MPI_THREAD_SERIALIZED
I multiple threads may execute and call MPI functions, but at any time only one thread will be

calling MPI
I user needs to synchronize threads properly to ensure this

4. MPI_THREAD_MULTIPLE
I multiples threads may call MPI functions at the same time
I the implementation will ensure these calls are sequentialized

The following function should be called instead of MPI_Init:

int MPI_Init_thread(int *argc, char ***argv,

int required, int *provided)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 15

Four levels of thread support are specified

1. MPI_THREAD_SINGLE: only one thread will execute

2. MPI_THREAD_FUNNELED
I multiple threads may execute, but only the master thread will call MPI functions

3. MPI_THREAD_SERIALIZED
I multiple threads may execute and call MPI functions, but at any time only one thread will be

calling MPI
I user needs to synchronize threads properly to ensure this

4. MPI_THREAD_MULTIPLE
I multiples threads may call MPI functions at the same time
I the implementation will ensure these calls are sequentialized

The following function should be called instead of MPI_Init:

int MPI_Init_thread(int *argc, char ***argv,

int required, int *provided)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 15

Four levels of thread support are specified

1. MPI_THREAD_SINGLE: only one thread will execute

2. MPI_THREAD_FUNNELED
I multiple threads may execute, but only the master thread will call MPI functions

3. MPI_THREAD_SERIALIZED
I multiple threads may execute and call MPI functions, but at any time only one thread will be

calling MPI
I user needs to synchronize threads properly to ensure this

4. MPI_THREAD_MULTIPLE
I multiples threads may call MPI functions at the same time
I the implementation will ensure these calls are sequentialized

The following function should be called instead of MPI_Init:

int MPI_Init_thread(int *argc, char ***argv,

int required, int *provided)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 15

Four levels of thread support are specified

1. MPI_THREAD_SINGLE: only one thread will execute

2. MPI_THREAD_FUNNELED
I multiple threads may execute, but only the master thread will call MPI functions

3. MPI_THREAD_SERIALIZED
I multiple threads may execute and call MPI functions, but at any time only one thread will be

calling MPI
I user needs to synchronize threads properly to ensure this

4. MPI_THREAD_MULTIPLE
I multiples threads may call MPI functions at the same time
I the implementation will ensure these calls are sequentialized

The following function should be called instead of MPI_Init:

int MPI_Init_thread(int *argc, char ***argv,

int required, int *provided)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 15

Four levels of thread support are specified

1. MPI_THREAD_SINGLE: only one thread will execute

2. MPI_THREAD_FUNNELED
I multiple threads may execute, but only the master thread will call MPI functions

3. MPI_THREAD_SERIALIZED
I multiple threads may execute and call MPI functions, but at any time only one thread will be

calling MPI
I user needs to synchronize threads properly to ensure this

4. MPI_THREAD_MULTIPLE
I multiples threads may call MPI functions at the same time
I the implementation will ensure these calls are sequentialized

The following function should be called instead of MPI_Init:

int MPI_Init_thread(int *argc, char ***argv,

int required, int *provided)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 15

Four levels of thread support are specified

1. MPI_THREAD_SINGLE: only one thread will execute

2. MPI_THREAD_FUNNELED
I multiple threads may execute, but only the master thread will call MPI functions

3. MPI_THREAD_SERIALIZED
I multiple threads may execute and call MPI functions, but at any time only one thread will be

calling MPI
I user needs to synchronize threads properly to ensure this

4. MPI_THREAD_MULTIPLE
I multiples threads may call MPI functions at the same time
I the implementation will ensure these calls are sequentialized

The following function should be called instead of MPI_Init:

int MPI_Init_thread(int *argc, char ***argv,

int required, int *provided)

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 15

Thread queries

int MPI_Query_thread(int *provided);

I returns provided level of thread support

int MPI_Is_thread_main(int *flag)

I true if calling thread is main thread, false otherwise

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 16

Thread queries

int MPI_Query_thread(int *provided);

I returns provided level of thread support

int MPI_Is_thread_main(int *flag)

I true if calling thread is main thread, false otherwise

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 16

Thread queries

int MPI_Query_thread(int *provided);

I returns provided level of thread support

int MPI_Is_thread_main(int *flag)

I true if calling thread is main thread, false otherwise

S.F. Siegel � CISC 372: Parallel Computing � OpenMP part 4 16

