CISC 372: Parallel Computing
CUDA, part 1

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

CUDA Overview

S.F. Siegel 3

CISC 372: Parallel Computing

< CUDA 1

CUDA Overview

» graphical processors (GPUs) are massively parallel machines
> very different architecture from CPUs

multiple “streaming multiprocessors”

designed for doing large vector computations in parallel

not so good for algorithms with complex logic and branching

vvyy

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 2

CUDA Overview

» graphical processors (GPUs) are massively parallel machines
> very different architecture from CPUs
» multiple “streaming multiprocessors”
» designed for doing large vector computations in parallel
> not so good for algorithms with complex logic and branching
» ~ 2007: researchers realized that GPUs could be used for purposes other than graphics
» birth of the GPGPU: general purpose GPU

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 2

CUDA Overview

» graphical processors (GPUs) are massively parallel machines

> very different architecture from CPUs

» multiple “streaming multiprocessors”

» designed for doing large vector computations in parallel

> not so good for algorithms with complex logic and branching

» ~ 2007: researchers realized that GPUs could be used for purposes other than graphics
» birth of the GPGPU: general purpose GPU

» what was missing was a nice general purpose programming language targeting GPGPUs

S.F. Siegel CISC 372: Parallel Computing < CUDA 1 2

CUDA Overview

» graphical processors (GPUs) are massively parallel machines

> very different architecture from CPUs

» multiple “streaming multiprocessors”

» designed for doing large vector computations in parallel

> not so good for algorithms with complex logic and branching

» ~ 2007: researchers realized that GPUs could be used for purposes other than graphics
» birth of the GPGPU: general purpose GPU
» what was missing was a nice general purpose programming language targeting GPGPUs
» NVIDIA developed CUDA-C to fill this niche
» based on C/C++

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 2

CUDA Overview

» graphical processors (GPUs) are massively parallel machines
> very different architecture from CPUs
» multiple “streaming multiprocessors”
» designed for doing large vector computations in parallel
> not so good for algorithms with complex logic and branching
» ~ 2007: researchers realized that GPUs could be used for purposes other than graphics
» birth of the GPGPU: general purpose GPU

» what was missing was a nice general purpose programming language targeting GPGPUs
» NVIDIA developed CUDA-C to fill this niche

» based on C/C++
» a few new language primitives; runtime library

S.F. Siegel CISC 372: Parallel Computing < CUDA 1 2

CUDA Overview

» graphical processors (GPUs) are massively parallel machines
> very different architecture from CPUs
» multiple “streaming multiprocessors”
» designed for doing large vector computations in parallel
> not so good for algorithms with complex logic and branching
» ~ 2007: researchers realized that GPUs could be used for purposes other than graphics
» birth of the GPGPU: general purpose GPU

» what was missing was a nice general purpose programming language targeting GPGPUs

» NVIDIA developed CUDA-C to fill this niche

» based on C/C++
» a few new language primitives; runtime library
> for writing heterogeneous programs: mix of GPU and CPU code

S.F. Siegel CISC 372: Parallel Computing < CUDA 1 2

CUDA Overview

» graphical processors (GPUs) are massively parallel machines
> very different architecture from CPUs
» multiple “streaming multiprocessors”
» designed for doing large vector computations in parallel
> not so good for algorithms with complex logic and branching
» ~ 2007: researchers realized that GPUs could be used for purposes other than graphics
» birth of the GPGPU: general purpose GPU

» what was missing was a nice general purpose programming language targeting GPGPUs

» NVIDIA developed CUDA-C to fill this niche

» based on C/C++

» a few new language primitives; runtime library

> for writing heterogeneous programs: mix of GPU and CPU code
» kernel: a compute-intensive function to be run on the GPU

S.F. Siegel CISC 372: Parallel Computing < CUDA 1 2

CUDA Overview

» graphical processors (GPUs) are massively parallel machines
> very different architecture from CPUs
» multiple “streaming multiprocessors”
» designed for doing large vector computations in parallel
> not so good for algorithms with complex logic and branching

» ~ 2007: researchers realized that GPUs could be used for purposes other than graphics
» birth of the GPGPU: general purpose GPU

» what was missing was a nice general purpose programming language targeting GPGPUs
» NVIDIA developed CUDA-C to fill this niche

» based on C/C++

a few new language primitives; runtime library

for writing heterogeneous programs: mix of GPU and CPU code
kernel: a compute-intensive function to be run on the GPU
primitives for launching kernels, copying data between CPU and GPU

vvyvyy

S.F. Siegel CISC 372: Parallel Computing < CUDA 1 2

CUDA Overview

» graphical processors (GPUs) are massively parallel machines

>
>
>
| 2

very different architecture from CPUs

multiple “streaming multiprocessors”

designed for doing large vector computations in parallel

not so good for algorithms with complex logic and branching

» ~ 2007: researchers realized that GPUs could be used for purposes other than graphics

>

birth of the GPGPU: general purpose GPU

» what was missing was a nice general purpose programming language targeting GPGPUs
» NVIDIA developed CUDA-C to fill this niche

>

vvyVvyyVvyy

S.F. Siegel

based on C/C++

a few new language primitives; runtime library

for writing heterogeneous programs: mix of GPU and CPU code

kernel: a compute-intensive function to be run on the GPU

primitives for launching kernels, copying data between CPU and GPU

many algorithms can see orders of magnitude performance improvements over CPU

CISC 372: Parallel Computing < CUDA 1 2

NVIDIA Tesla K80

S.F. Siegel o CISC 372: Parallel Computing <o CUDA 1 3

K80 properties

Device name: Tesla K80

Compute capability: 3.7

Number of SMPs: 13

Max threads per block: 1024
Registers per block: 65536

Warp size: 32

Total global memory: 11996954624
Total constant memory: 65536
Shared memory per block: 49152
Memory Clock Rate (KHz): 2505000
Memory Bus Width (bits): 384
Peak Memory Bandwidth (GB/s): 240.480000

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 4

K80 properties

Device name: Tesla K80

Compute capability: 3.7

Number of SMPs: 13

Max threads per block: 1024
Registers per block: 65536

Warp size: 32

Total global memory: 11996954624
Total constant memory: 65536
Shared memory per block: 49152
Memory Clock Rate (KHz): 2505000
Memory Bus Width (bits): 384
Peak Memory Bandwidth (GB/s): 240.480000

Price: ~ $500

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 4

CUDA Background

CUDA C is an extension of C for writing programs targeting NVIDIA's GPUs
goal is to use GPUs for general purpose computing

introduced in 2007, updated regularly

vVvyyvyy

some scientific problems can see enormous performance gains
» see https://developer.nvidia.com/about-cuda
References:

» the CUDA Programming Guide

» in our repo under docs/
> https://docs.nvidia.com/cuda/cuda-c-programming-guide/

» CUDA by Example

> https://developer.nvidia.com/cuda-example
» pay for the book, examples are free

S.F. Siegel CISC 372: Parallel Computing < CUDA 1 5

https://developer.nvidia.com/about-cuda
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://developer.nvidia.com/cuda-example

CUDA Programming Model

S.F. Siegel o CISC 372: Parallel Computing <o CUDA 1

CUDA Programming Model

P program execution starts as a single thread as usual

S.F. Siegel o CISC 372: Parallel Computing <o CUDA 1 6

CUDA Programming Model

P program execution starts as a single thread as usual
» a kernel function is a function declared with specifier __global_

S.F. Siegel o CISC 372: Parallel Computing < CUDA 1 6

CUDA Programming Model

P program execution starts as a single thread as usual
» a kernel function is a function declared with specifier __global_

» invoking a kernel function instantiates a grid executing on a device

S.F. Siegel o CISC 372: Parallel Computing < CUDA 1 6

CUDA Programming Model

P program execution starts as a single thread as usual
» a kernel function is a function declared with specifier __global__

» invoking a kernel function instantiates a grid executing on a device
» the grid consists of a collection of blocks

S.F. Siegel o CISC 372: Parallel Computing < CUDA 1 6

CUDA Programming Model

P program execution starts as a single thread as usual

» a kernel function is a function declared with specifier __global__
» invoking a kernel function instantiates a grid executing on a device
» the grid consists of a collection of blocks

> organized in a 1d, 2d, or 3d Cartesian geometry

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 6

CUDA Programming Model

P program execution starts as a single thread as usual
» a kernel function is a function declared with specifier __global__
» invoking a kernel function instantiates a grid executing on a device
» the grid consists of a collection of blocks

> organized in a 1d, 2d, or 3d Cartesian geometry

» each block consists of a collection of threads

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 6

CUDA Programming Model

P program execution starts as a single thread as usual
» a kernel function is a function declared with specifier __global__
» invoking a kernel function instantiates a grid executing on a device
» the grid consists of a collection of blocks

> organized in a 1d, 2d, or 3d Cartesian geometry
» each block consists of a collection of threads

» organized in a 1d, 2d, or 3d Cartesian geometry

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 6

CUDA Programming Model

program execution starts as a single thread as usual
a kernel function is a function declared with specifier __global_

invoking a kernel function instantiates a grid executing on a device

vvyyvyy

the grid consists of a collection of blocks
> organized in a 1d, 2d, or 3d Cartesian geometry

v

each block consists of a collection of threads
» organized in a 1d, 2d, or 3d Cartesian geometry
» the blocks must be completely independent

» they can execute concurrently or sequentially or anything in between
> in any order

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 6

CUDA Programming Model

program execution starts as a single thread as usual
a kernel function is a function declared with specifier __global_

invoking a kernel function instantiates a grid executing on a device

vvyyvyy

the grid consists of a collection of blocks
> organized in a 1d, 2d, or 3d Cartesian geometry

v

each block consists of a collection of threads
» organized in a 1d, 2d, or 3d Cartesian geometry
» the blocks must be completely independent

» they can execute concurrently or sequentially or anything in between
> in any order

» the threads within a block execute concurrenly and may coordinate

> barriers
» shared memory (shared by all threads in the block)

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 6

hellol.cu: Hello, world

#include <stdio.h>

__global__ void kernel(void) {
printf("Hello from the GPU!\n");
}

int main (void) {
kernel<<<1,1>>>(); // launch kernel with 1 block, 1 thread per block
printf("Hello from the CPU!\n");
cudaDeviceSynchronize(); // wait for kernel to return

}

S.F. Siegel o CISC 372: Parallel Computing < CUDA 1 7

hellol.cu: Hello, world

> __global_

S.F. Siegel

#include <stdio.h>

__global__ void kernel(void) {
printf("Hello from the GPU!\n");

}

int main (void) {
kernel<<<1,1>>>();

// launch kernel with 1 block, 1 thread per block

printf("Hello from the CPU!\n");
cudaDeviceSynchronize(); // wait for kernel to return

}

<

CISC 372: Parallel Computing

indicates a function is a kernel: to be run on GPU

< CUDA 1 7

hellol.cu: Hello, world

> __global_

#include <stdio.h>

__global__ void kernel(void) {
printf("Hello from the GPU!\n");

}

int main (void) {
kernel<<<1,1>>>();

// launch kernel with 1 block, 1 thread per block

printf("Hello from the CPU!\n");
cudaDeviceSynchronize(); // wait for kernel to return

}

indicates a function is a kernel: to be run on GPU

> f<<<blocks,threadsPerBlock>>>(...)
» launch the kernel with blocks blocks and threadsPerBlock threads per block

S.F. Siegel

<

CISC 372: Parallel Computing

< CUDA 1 7

hellol.cu: Hello, world

#include <stdio.h>

__global__ void kernel(void) {
printf("Hello from the GPU!\n");
}

int main (void) {
kernel<<<1,1>>>(); // launch kernel with 1 block, 1 thread per block
printf("Hello from the CPU!\n");
cudaDeviceSynchronize(); // wait for kernel to return

}

> __global__ indicates a function is a kernel: to be run on GPU

> f<<<blocks,threadsPerBlock>>>(...)

» launch the kernel with blocks blocks and threadsPerBlock threads per block
» returns immediately as kernel runs concurrently on GPU

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 7

Compiling and running a CUDA program on Beowulf

siegel@grendel:~/372/code/src/cuda/hello$ nvcc -o hellol.exec hellol.cu
siegel@grendel:~/372/code/src/cuda/hello$ srun -n 1 --gres=gpu:1 ./hellol.exec
srun: job 172804 queued and waiting for resources

srun: job 172804 has been allocated resources

Hello from the CPU!

Hello from the GPU!

siegel@grendel:~/372/code/src/cuda/hello$

» nvcc: similar to cc, different options
» —-gres=gpu:1 requests one GPU (in addition to the one CPU core)

S.F. Siegel <o CISC 372: Parallel Computing < CUDA 1 8

hello2.cu: multiple blocks, threads per block

#include <stdio.h>

__global__ void kermel(void) {
int bid = blockIdx.x; // block ID number
int tid = threadIdx.x; // thread ID number (within its block)
printf("Hello from block %d, thread %d of the GPU\n", bid, tid);
}

int main (void) {
kernel<<<3,4>>>(); // 3 blocks, 4 threads per block
printf("Hello, World\n");
cudaDeviceSynchronize() ;

S.F. Siegel <o CISC 372: Parallel Computing < CUDA 1 9

Output of hello2.cu

$ nvcc -o hello2.exec hello2.cu

$ srun --unbuffered -n 1 --gres=gpu:1l ./hello2.exec
srun: job 172815 queued and waiting for resources
srun: job 172815 has been allocated resources
Hello, World

Hello from block 0, thread O of the GPU

Hello from block 0, thread 1 of the GPU

Hello from block 0, thread 2 of the GPU

Hello from block 0, thread 3 of the GPU

Hello from block 2, thread O of the GPU

Hello from block 2, thread 1 of the GPU

Hello from block 2, thread 2 of the GPU

Hello from block 2, thread 3 of the GPU

Hello from block 1, thread O of the GPU

Hello from block 1, thread 1 of the GPU

Hello from block 1, thread 2 of the GPU

Hello from block 1, thread 3 of the GPU

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 10

Compiling and running CUDA programs on Bridges

Create a batch script like this:

#!/bin/bash

#SBATCH -p GPU-shared
#SBATCH -t 00:01:00
#SBATCH -N 1

#SBATCH --ntasks-per-node 1
#SBATCH --gres=gpu:p100:1

echo commands to stdout
set -x

./hellol.exec

S.F. Siegel o CISC 372: Parallel Computing < CUDA 1 11

https://portal.xsede.org/psc-bridges

Compiling and running CUDA programs on Bridges

Create a batch script like this:

#!/bin/bash

#SBATCH -p GPU-shared
#SBATCH -t 00:01:00
#SBATCH -N 1

#SBATCH --ntasks-per-node 1
#SBATCH --gres=gpu:p100:1

echo commands to stdout
set -x

./hellol.exec

» GPU partitions: GPU-shared, GPU-small, GPU
> you will get charged for a full node (28 CPUs) unless you use GPU-shared

S.F. Siegel o CISC 372: Parallel Computing < CUDA 1 11

https://portal.xsede.org/psc-bridges

Compiling and running CUDA programs on Bridges

Create a batch script like this:

#!/bin/bash

#SBATCH -p GPU-shared
#SBATCH -t 00:01:00
#SBATCH -N 1

#SBATCH --ntasks-per-node 1
#SBATCH --gres=gpu:p100:1

echo commands to stdout
set -x

./hellol.exec

» GPU partitions: GPU-shared, GPU-small, GPU
> you will get charged for a full node (28 CPUs) unless you use GPU-shared

» p100 specifies the type of GPU (NVIDIA P100)
» the other option is k80

> see https://portal.xsede.org/psc-bridges, Using Bridges GPU nodes

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 11

https://portal.xsede.org/psc-bridges

CUDA C Language Elements: Function type qualifiers

S.F. Siegel o CISC 372: Parallel Computing o CUDA 1 12

CUDA C Language Elements: Function type qualifiers

» __device__: executed on device, callable from device only

S.F. Siegel o CISC 372: Parallel Computing o CUDA 1 12

CUDA C Language Elements: Function type qualifiers

» __device__: executed on device, callable from device only
» __global__: kernel, executed on device, callable from host

» function must return void

> callable from device for compute quality > 3.z
» calls must specify execution configuration

» asynchronous

S.F. Siegel o CISC 372: Parallel Computing < CUDA 1 12

CUDA C Language Elements: Function type qualifiers

» __device__: executed on device, callable from device only
> __global_
» function must return void
> callable from device for compute quality > 3.z
P calls must specify execution configuration
» asynchronous
> __host__: executed on host, callable on host only

» default
» may be used with __device__

. kernel, executed on device, callable from host

» function is duplicated
> use preprocessor macro __CUDA_ARCH__ in body to include code that may be just for device or
just for host version of function; if this is defined you are in CUDA version, else host version

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 12

CUDA memory hierarchy

| global memory and constant memory |

RN

shared memory | | shared memory
A A
/ A\ A\
[Thread 0| | [Thread 1] | [Thread 2 [Thread 0| | [Thread 1] | [Thread 2
Block 0 Block 1

|
|
|
|
|
|
|
|
|
|
|
|
|
| registers registers registers registers registers registers
|
|
|
|
|
|
|
|
|
|
|
|

Variable type qualifiers

S.F. Siegel

<&

CISC 372: Parallel Computing

<o

CUDA 1

Variable type qualifiers

» __device_

may be used in conjunction with __constant__ or __shared__
when alone, variable resides in global memory space on device
has lifetime of application

is accessible from all threads within the grid

is accessible from host through library functions

may be used with __managed__ to be directly referenced from host code

vVVyVVYYVYY

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 14

Variable type qualifiers

» __device_

may be used in conjunction with __constant__ or __shared__
when alone, variable resides in global memory space on device
has lifetime of application

is accessible from all threads within the grid

is accessible from host through library functions

may be used with __managed__ to be directly referenced from host code

vVVyVVYYVYY

» __constant__

v

variable resides on device in constant memory
has lifetime of application

accessible from all threads in grid

accessible from host through library functions

vvyy

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 14

Variable type qualifiers

» __device_

may be used in conjunction with __constant__ or __shared__
when alone, variable resides in global memory space on device
has lifetime of application

is accessible from all threads within the grid

is accessible from host through library functions

may be used with __managed__ to be directly referenced from host code

vVVyVVYYVYY

» __constant__
> variable resides on device in constant memory
» has lifetime of application
» accessible from all threads in grid
P accessible from host through library functions
» __shared__
» variable resides in shared memory space of one block
> has lifetime of the block
P only accessible by all threads in that block

S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 14

Variable type qualifiers

» __device

may be used in conjunction with __constant__ or __shared__
when alone, variable resides in global memory space on device
has lifetime of application

is accessible from all threads within the grid

is accessible from host through library functions

may be used with __managed__ to be directly referenced from host code

vVVyVVYYVYY

» __constant__
> variable resides on device in constant memory
» has lifetime of application
» accessible from all threads in grid
P accessible from host through library functions
» __shared__
» variable resides in shared memory space of one block
> has lifetime of the block
P only accessible by all threads in that block

» nothing: thread-local variable
S.F. Siegel < CISC 372: Parallel Computing < CUDA 1 14

