
CISC 372: Parallel Computing
CUDA, part 1

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

CUDA Overview

I graphical processors (GPUs) are massively parallel machines
I very different architecture from CPUs
I multiple “streaming multiprocessors”
I designed for doing large vector computations in parallel
I not so good for algorithms with complex logic and branching

I ∼ 2007: researchers realized that GPUs could be used for purposes other than graphics
I birth of the GPGPU: general purpose GPU

I what was missing was a nice general purpose programming language targeting GPGPUs
I NVIDIA developed CUDA-C to fill this niche

I based on C/C++
I a few new language primitives; runtime library
I for writing heterogeneous programs: mix of GPU and CPU code
I kernel: a compute-intensive function to be run on the GPU
I primitives for launching kernels, copying data between CPU and GPU
I many algorithms can see orders of magnitude performance improvements over CPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 2

CUDA Overview

I graphical processors (GPUs) are massively parallel machines
I very different architecture from CPUs
I multiple “streaming multiprocessors”
I designed for doing large vector computations in parallel
I not so good for algorithms with complex logic and branching

I ∼ 2007: researchers realized that GPUs could be used for purposes other than graphics
I birth of the GPGPU: general purpose GPU

I what was missing was a nice general purpose programming language targeting GPGPUs
I NVIDIA developed CUDA-C to fill this niche

I based on C/C++
I a few new language primitives; runtime library
I for writing heterogeneous programs: mix of GPU and CPU code
I kernel: a compute-intensive function to be run on the GPU
I primitives for launching kernels, copying data between CPU and GPU
I many algorithms can see orders of magnitude performance improvements over CPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 2

CUDA Overview

I graphical processors (GPUs) are massively parallel machines
I very different architecture from CPUs
I multiple “streaming multiprocessors”
I designed for doing large vector computations in parallel
I not so good for algorithms with complex logic and branching

I ∼ 2007: researchers realized that GPUs could be used for purposes other than graphics
I birth of the GPGPU: general purpose GPU

I what was missing was a nice general purpose programming language targeting GPGPUs
I NVIDIA developed CUDA-C to fill this niche

I based on C/C++
I a few new language primitives; runtime library
I for writing heterogeneous programs: mix of GPU and CPU code
I kernel: a compute-intensive function to be run on the GPU
I primitives for launching kernels, copying data between CPU and GPU
I many algorithms can see orders of magnitude performance improvements over CPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 2

CUDA Overview

I graphical processors (GPUs) are massively parallel machines
I very different architecture from CPUs
I multiple “streaming multiprocessors”
I designed for doing large vector computations in parallel
I not so good for algorithms with complex logic and branching

I ∼ 2007: researchers realized that GPUs could be used for purposes other than graphics
I birth of the GPGPU: general purpose GPU

I what was missing was a nice general purpose programming language targeting GPGPUs

I NVIDIA developed CUDA-C to fill this niche
I based on C/C++
I a few new language primitives; runtime library
I for writing heterogeneous programs: mix of GPU and CPU code
I kernel: a compute-intensive function to be run on the GPU
I primitives for launching kernels, copying data between CPU and GPU
I many algorithms can see orders of magnitude performance improvements over CPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 2

CUDA Overview

I graphical processors (GPUs) are massively parallel machines
I very different architecture from CPUs
I multiple “streaming multiprocessors”
I designed for doing large vector computations in parallel
I not so good for algorithms with complex logic and branching

I ∼ 2007: researchers realized that GPUs could be used for purposes other than graphics
I birth of the GPGPU: general purpose GPU

I what was missing was a nice general purpose programming language targeting GPGPUs
I NVIDIA developed CUDA-C to fill this niche

I based on C/C++

I a few new language primitives; runtime library
I for writing heterogeneous programs: mix of GPU and CPU code
I kernel: a compute-intensive function to be run on the GPU
I primitives for launching kernels, copying data between CPU and GPU
I many algorithms can see orders of magnitude performance improvements over CPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 2

CUDA Overview

I graphical processors (GPUs) are massively parallel machines
I very different architecture from CPUs
I multiple “streaming multiprocessors”
I designed for doing large vector computations in parallel
I not so good for algorithms with complex logic and branching

I ∼ 2007: researchers realized that GPUs could be used for purposes other than graphics
I birth of the GPGPU: general purpose GPU

I what was missing was a nice general purpose programming language targeting GPGPUs
I NVIDIA developed CUDA-C to fill this niche

I based on C/C++
I a few new language primitives; runtime library

I for writing heterogeneous programs: mix of GPU and CPU code
I kernel: a compute-intensive function to be run on the GPU
I primitives for launching kernels, copying data between CPU and GPU
I many algorithms can see orders of magnitude performance improvements over CPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 2

CUDA Overview

I graphical processors (GPUs) are massively parallel machines
I very different architecture from CPUs
I multiple “streaming multiprocessors”
I designed for doing large vector computations in parallel
I not so good for algorithms with complex logic and branching

I ∼ 2007: researchers realized that GPUs could be used for purposes other than graphics
I birth of the GPGPU: general purpose GPU

I what was missing was a nice general purpose programming language targeting GPGPUs
I NVIDIA developed CUDA-C to fill this niche

I based on C/C++
I a few new language primitives; runtime library
I for writing heterogeneous programs: mix of GPU and CPU code

I kernel: a compute-intensive function to be run on the GPU
I primitives for launching kernels, copying data between CPU and GPU
I many algorithms can see orders of magnitude performance improvements over CPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 2

CUDA Overview

I graphical processors (GPUs) are massively parallel machines
I very different architecture from CPUs
I multiple “streaming multiprocessors”
I designed for doing large vector computations in parallel
I not so good for algorithms with complex logic and branching

I ∼ 2007: researchers realized that GPUs could be used for purposes other than graphics
I birth of the GPGPU: general purpose GPU

I what was missing was a nice general purpose programming language targeting GPGPUs
I NVIDIA developed CUDA-C to fill this niche

I based on C/C++
I a few new language primitives; runtime library
I for writing heterogeneous programs: mix of GPU and CPU code
I kernel: a compute-intensive function to be run on the GPU

I primitives for launching kernels, copying data between CPU and GPU
I many algorithms can see orders of magnitude performance improvements over CPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 2

CUDA Overview

I graphical processors (GPUs) are massively parallel machines
I very different architecture from CPUs
I multiple “streaming multiprocessors”
I designed for doing large vector computations in parallel
I not so good for algorithms with complex logic and branching

I ∼ 2007: researchers realized that GPUs could be used for purposes other than graphics
I birth of the GPGPU: general purpose GPU

I what was missing was a nice general purpose programming language targeting GPGPUs
I NVIDIA developed CUDA-C to fill this niche

I based on C/C++
I a few new language primitives; runtime library
I for writing heterogeneous programs: mix of GPU and CPU code
I kernel: a compute-intensive function to be run on the GPU
I primitives for launching kernels, copying data between CPU and GPU

I many algorithms can see orders of magnitude performance improvements over CPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 2

CUDA Overview

I graphical processors (GPUs) are massively parallel machines
I very different architecture from CPUs
I multiple “streaming multiprocessors”
I designed for doing large vector computations in parallel
I not so good for algorithms with complex logic and branching

I ∼ 2007: researchers realized that GPUs could be used for purposes other than graphics
I birth of the GPGPU: general purpose GPU

I what was missing was a nice general purpose programming language targeting GPGPUs
I NVIDIA developed CUDA-C to fill this niche

I based on C/C++
I a few new language primitives; runtime library
I for writing heterogeneous programs: mix of GPU and CPU code
I kernel: a compute-intensive function to be run on the GPU
I primitives for launching kernels, copying data between CPU and GPU
I many algorithms can see orders of magnitude performance improvements over CPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 2

NVIDIA Tesla K80

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 3

K80 properties

Device name: Tesla K80

Compute capability: 3.7

Number of SMPs: 13

Max threads per block: 1024

Registers per block: 65536

Warp size: 32

Total global memory: 11996954624

Total constant memory: 65536

Shared memory per block: 49152

Memory Clock Rate (KHz): 2505000

Memory Bus Width (bits): 384

Peak Memory Bandwidth (GB/s): 240.480000

Price: ∼ $500

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 4

K80 properties

Device name: Tesla K80

Compute capability: 3.7

Number of SMPs: 13

Max threads per block: 1024

Registers per block: 65536

Warp size: 32

Total global memory: 11996954624

Total constant memory: 65536

Shared memory per block: 49152

Memory Clock Rate (KHz): 2505000

Memory Bus Width (bits): 384

Peak Memory Bandwidth (GB/s): 240.480000

Price: ∼ $500

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 4

CUDA Background

I CUDA C is an extension of C for writing programs targeting NVIDIA’s GPUs

I goal is to use GPUs for general purpose computing

I introduced in 2007, updated regularly

I some scientific problems can see enormous performance gains

I see https://developer.nvidia.com/about-cuda

References:
I the CUDA Programming Guide

I in our repo under docs/
I https://docs.nvidia.com/cuda/cuda-c-programming-guide/

I CUDA by Example
I https://developer.nvidia.com/cuda-example
I pay for the book, examples are free

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 5

https://developer.nvidia.com/about-cuda
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://developer.nvidia.com/cuda-example

CUDA Programming Model

I program execution starts as a single thread as usual

I a kernel function is a function declared with specifier __global__

I invoking a kernel function instantiates a grid executing on a device
I the grid consists of a collection of blocks

I organized in a 1d, 2d, or 3d Cartesian geometry

I each block consists of a collection of threads
I organized in a 1d, 2d, or 3d Cartesian geometry

I the blocks must be completely independent
I they can execute concurrently or sequentially or anything in between
I in any order

I the threads within a block execute concurrenly and may coordinate
I barriers
I shared memory (shared by all threads in the block)

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 6

CUDA Programming Model

I program execution starts as a single thread as usual

I a kernel function is a function declared with specifier __global__

I invoking a kernel function instantiates a grid executing on a device
I the grid consists of a collection of blocks

I organized in a 1d, 2d, or 3d Cartesian geometry

I each block consists of a collection of threads
I organized in a 1d, 2d, or 3d Cartesian geometry

I the blocks must be completely independent
I they can execute concurrently or sequentially or anything in between
I in any order

I the threads within a block execute concurrenly and may coordinate
I barriers
I shared memory (shared by all threads in the block)

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 6

CUDA Programming Model

I program execution starts as a single thread as usual

I a kernel function is a function declared with specifier __global__

I invoking a kernel function instantiates a grid executing on a device
I the grid consists of a collection of blocks

I organized in a 1d, 2d, or 3d Cartesian geometry

I each block consists of a collection of threads
I organized in a 1d, 2d, or 3d Cartesian geometry

I the blocks must be completely independent
I they can execute concurrently or sequentially or anything in between
I in any order

I the threads within a block execute concurrenly and may coordinate
I barriers
I shared memory (shared by all threads in the block)

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 6

CUDA Programming Model

I program execution starts as a single thread as usual

I a kernel function is a function declared with specifier __global__

I invoking a kernel function instantiates a grid executing on a device

I the grid consists of a collection of blocks
I organized in a 1d, 2d, or 3d Cartesian geometry

I each block consists of a collection of threads
I organized in a 1d, 2d, or 3d Cartesian geometry

I the blocks must be completely independent
I they can execute concurrently or sequentially or anything in between
I in any order

I the threads within a block execute concurrenly and may coordinate
I barriers
I shared memory (shared by all threads in the block)

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 6

CUDA Programming Model

I program execution starts as a single thread as usual

I a kernel function is a function declared with specifier __global__

I invoking a kernel function instantiates a grid executing on a device
I the grid consists of a collection of blocks

I organized in a 1d, 2d, or 3d Cartesian geometry

I each block consists of a collection of threads
I organized in a 1d, 2d, or 3d Cartesian geometry

I the blocks must be completely independent
I they can execute concurrently or sequentially or anything in between
I in any order

I the threads within a block execute concurrenly and may coordinate
I barriers
I shared memory (shared by all threads in the block)

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 6

CUDA Programming Model

I program execution starts as a single thread as usual

I a kernel function is a function declared with specifier __global__

I invoking a kernel function instantiates a grid executing on a device
I the grid consists of a collection of blocks

I organized in a 1d, 2d, or 3d Cartesian geometry

I each block consists of a collection of threads
I organized in a 1d, 2d, or 3d Cartesian geometry

I the blocks must be completely independent
I they can execute concurrently or sequentially or anything in between
I in any order

I the threads within a block execute concurrenly and may coordinate
I barriers
I shared memory (shared by all threads in the block)

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 6

CUDA Programming Model

I program execution starts as a single thread as usual

I a kernel function is a function declared with specifier __global__

I invoking a kernel function instantiates a grid executing on a device
I the grid consists of a collection of blocks

I organized in a 1d, 2d, or 3d Cartesian geometry

I each block consists of a collection of threads

I organized in a 1d, 2d, or 3d Cartesian geometry

I the blocks must be completely independent
I they can execute concurrently or sequentially or anything in between
I in any order

I the threads within a block execute concurrenly and may coordinate
I barriers
I shared memory (shared by all threads in the block)

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 6

CUDA Programming Model

I program execution starts as a single thread as usual

I a kernel function is a function declared with specifier __global__

I invoking a kernel function instantiates a grid executing on a device
I the grid consists of a collection of blocks

I organized in a 1d, 2d, or 3d Cartesian geometry

I each block consists of a collection of threads
I organized in a 1d, 2d, or 3d Cartesian geometry

I the blocks must be completely independent
I they can execute concurrently or sequentially or anything in between
I in any order

I the threads within a block execute concurrenly and may coordinate
I barriers
I shared memory (shared by all threads in the block)

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 6

CUDA Programming Model

I program execution starts as a single thread as usual

I a kernel function is a function declared with specifier __global__

I invoking a kernel function instantiates a grid executing on a device
I the grid consists of a collection of blocks

I organized in a 1d, 2d, or 3d Cartesian geometry

I each block consists of a collection of threads
I organized in a 1d, 2d, or 3d Cartesian geometry

I the blocks must be completely independent
I they can execute concurrently or sequentially or anything in between
I in any order

I the threads within a block execute concurrenly and may coordinate
I barriers
I shared memory (shared by all threads in the block)

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 6

CUDA Programming Model

I program execution starts as a single thread as usual

I a kernel function is a function declared with specifier __global__

I invoking a kernel function instantiates a grid executing on a device
I the grid consists of a collection of blocks

I organized in a 1d, 2d, or 3d Cartesian geometry

I each block consists of a collection of threads
I organized in a 1d, 2d, or 3d Cartesian geometry

I the blocks must be completely independent
I they can execute concurrently or sequentially or anything in between
I in any order

I the threads within a block execute concurrenly and may coordinate
I barriers
I shared memory (shared by all threads in the block)

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 6

hello1.cu: Hello, world

#include <stdio.h>

__global__ void kernel(void) {

printf("Hello from the GPU!\n");

}

int main (void) {

kernel<<<1,1>>>(); // launch kernel with 1 block, 1 thread per block

printf("Hello from the CPU!\n");

cudaDeviceSynchronize(); // wait for kernel to return

}

I __global__ indicates a function is a kernel: to be run on GPU
I f<<<blocks,threadsPerBlock>>>(...)

I launch the kernel with blocks blocks and threadsPerBlock threads per block
I returns immediately as kernel runs concurrently on GPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 7

hello1.cu: Hello, world

#include <stdio.h>

__global__ void kernel(void) {

printf("Hello from the GPU!\n");

}

int main (void) {

kernel<<<1,1>>>(); // launch kernel with 1 block, 1 thread per block

printf("Hello from the CPU!\n");

cudaDeviceSynchronize(); // wait for kernel to return

}

I __global__ indicates a function is a kernel: to be run on GPU

I f<<<blocks,threadsPerBlock>>>(...)
I launch the kernel with blocks blocks and threadsPerBlock threads per block
I returns immediately as kernel runs concurrently on GPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 7

hello1.cu: Hello, world

#include <stdio.h>

__global__ void kernel(void) {

printf("Hello from the GPU!\n");

}

int main (void) {

kernel<<<1,1>>>(); // launch kernel with 1 block, 1 thread per block

printf("Hello from the CPU!\n");

cudaDeviceSynchronize(); // wait for kernel to return

}

I __global__ indicates a function is a kernel: to be run on GPU
I f<<<blocks,threadsPerBlock>>>(...)

I launch the kernel with blocks blocks and threadsPerBlock threads per block

I returns immediately as kernel runs concurrently on GPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 7

hello1.cu: Hello, world

#include <stdio.h>

__global__ void kernel(void) {

printf("Hello from the GPU!\n");

}

int main (void) {

kernel<<<1,1>>>(); // launch kernel with 1 block, 1 thread per block

printf("Hello from the CPU!\n");

cudaDeviceSynchronize(); // wait for kernel to return

}

I __global__ indicates a function is a kernel: to be run on GPU
I f<<<blocks,threadsPerBlock>>>(...)

I launch the kernel with blocks blocks and threadsPerBlock threads per block
I returns immediately as kernel runs concurrently on GPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 7

Compiling and running a CUDA program on Beowulf

siegel@grendel:~/372/code/src/cuda/hello$ nvcc -o hello1.exec hello1.cu

siegel@grendel:~/372/code/src/cuda/hello$ srun -n 1 --gres=gpu:1 ./hello1.exec

srun: job 172804 queued and waiting for resources

srun: job 172804 has been allocated resources

Hello from the CPU!

Hello from the GPU!

siegel@grendel:~/372/code/src/cuda/hello$

I nvcc: similar to cc, different options

I --gres=gpu:1 requests one GPU (in addition to the one CPU core)

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 8

hello2.cu: multiple blocks, threads per block

#include <stdio.h>

__global__ void kernel(void) {

int bid = blockIdx.x; // block ID number

int tid = threadIdx.x; // thread ID number (within its block)

printf("Hello from block %d, thread %d of the GPU\n", bid, tid);

}

int main (void) {

kernel<<<3,4>>>(); // 3 blocks, 4 threads per block

printf("Hello, World\n");

cudaDeviceSynchronize();

}

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 9

Output of hello2.cu

$ nvcc -o hello2.exec hello2.cu

$ srun --unbuffered -n 1 --gres=gpu:1 ./hello2.exec

srun: job 172815 queued and waiting for resources

srun: job 172815 has been allocated resources

Hello, World

Hello from block 0, thread 0 of the GPU

Hello from block 0, thread 1 of the GPU

Hello from block 0, thread 2 of the GPU

Hello from block 0, thread 3 of the GPU

Hello from block 2, thread 0 of the GPU

Hello from block 2, thread 1 of the GPU

Hello from block 2, thread 2 of the GPU

Hello from block 2, thread 3 of the GPU

Hello from block 1, thread 0 of the GPU

Hello from block 1, thread 1 of the GPU

Hello from block 1, thread 2 of the GPU

Hello from block 1, thread 3 of the GPU

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 10

Compiling and running CUDA programs on Bridges

Create a batch script like this:

#!/bin/bash

#SBATCH -p GPU-shared

#SBATCH -t 00:01:00

#SBATCH -N 1

#SBATCH --ntasks-per-node 1

#SBATCH --gres=gpu:p100:1

echo commands to stdout

set -x

./hello1.exec

I GPU partitions: GPU-shared, GPU-small, GPU
I you will get charged for a full node (28 CPUs) unless you use GPU-shared

I p100 specifies the type of GPU (NVIDIA P100)
I the other option is k80

I see https://portal.xsede.org/psc-bridges, Using Bridges GPU nodes

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 11

https://portal.xsede.org/psc-bridges

Compiling and running CUDA programs on Bridges

Create a batch script like this:

#!/bin/bash

#SBATCH -p GPU-shared

#SBATCH -t 00:01:00

#SBATCH -N 1

#SBATCH --ntasks-per-node 1

#SBATCH --gres=gpu:p100:1

echo commands to stdout

set -x

./hello1.exec

I GPU partitions: GPU-shared, GPU-small, GPU
I you will get charged for a full node (28 CPUs) unless you use GPU-shared

I p100 specifies the type of GPU (NVIDIA P100)
I the other option is k80

I see https://portal.xsede.org/psc-bridges, Using Bridges GPU nodes

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 11

https://portal.xsede.org/psc-bridges

Compiling and running CUDA programs on Bridges

Create a batch script like this:

#!/bin/bash

#SBATCH -p GPU-shared

#SBATCH -t 00:01:00

#SBATCH -N 1

#SBATCH --ntasks-per-node 1

#SBATCH --gres=gpu:p100:1

echo commands to stdout

set -x

./hello1.exec

I GPU partitions: GPU-shared, GPU-small, GPU
I you will get charged for a full node (28 CPUs) unless you use GPU-shared

I p100 specifies the type of GPU (NVIDIA P100)
I the other option is k80

I see https://portal.xsede.org/psc-bridges, Using Bridges GPU nodes

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 11

https://portal.xsede.org/psc-bridges

CUDA C Language Elements: Function type qualifiers

I __device__: executed on device, callable from device only
I __global__: kernel, executed on device, callable from host

I function must return void
I callable from device for compute quality > 3.x
I calls must specify execution configuration
I asynchronous

I __host__: executed on host, callable on host only
I default
I may be used with __device__

I function is duplicated
I use preprocessor macro __CUDA_ARCH__ in body to include code that may be just for device or

just for host version of function; if this is defined you are in CUDA version, else host version

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 12

CUDA C Language Elements: Function type qualifiers

I __device__: executed on device, callable from device only

I __global__: kernel, executed on device, callable from host
I function must return void
I callable from device for compute quality > 3.x
I calls must specify execution configuration
I asynchronous

I __host__: executed on host, callable on host only
I default
I may be used with __device__

I function is duplicated
I use preprocessor macro __CUDA_ARCH__ in body to include code that may be just for device or

just for host version of function; if this is defined you are in CUDA version, else host version

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 12

CUDA C Language Elements: Function type qualifiers

I __device__: executed on device, callable from device only
I __global__: kernel, executed on device, callable from host

I function must return void
I callable from device for compute quality > 3.x
I calls must specify execution configuration
I asynchronous

I __host__: executed on host, callable on host only
I default
I may be used with __device__

I function is duplicated
I use preprocessor macro __CUDA_ARCH__ in body to include code that may be just for device or

just for host version of function; if this is defined you are in CUDA version, else host version

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 12

CUDA C Language Elements: Function type qualifiers

I __device__: executed on device, callable from device only
I __global__: kernel, executed on device, callable from host

I function must return void
I callable from device for compute quality > 3.x
I calls must specify execution configuration
I asynchronous

I __host__: executed on host, callable on host only
I default
I may be used with __device__

I function is duplicated
I use preprocessor macro __CUDA_ARCH__ in body to include code that may be just for device or

just for host version of function; if this is defined you are in CUDA version, else host version

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 12

CUDA memory hierarchy

CPU

Block 0

Grid

global memory and constant memory

Thread 0

registers

Thread 1

registers

shared memory

Thread 2

registers

Block 1

Thread 0

registers

Thread 1

registers

shared memory

Thread 2

registers

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 13

Variable type qualifiers

I __device__
I may be used in conjunction with __constant__ or __shared__
I when alone, variable resides in global memory space on device
I has lifetime of application
I is accessible from all threads within the grid
I is accessible from host through library functions
I may be used with __managed__ to be directly referenced from host code

I __constant__
I variable resides on device in constant memory
I has lifetime of application
I accessible from all threads in grid
I accessible from host through library functions

I __shared__
I variable resides in shared memory space of one block
I has lifetime of the block
I only accessible by all threads in that block

I nothing: thread-local variable

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 14

Variable type qualifiers

I __device__
I may be used in conjunction with __constant__ or __shared__
I when alone, variable resides in global memory space on device
I has lifetime of application
I is accessible from all threads within the grid
I is accessible from host through library functions
I may be used with __managed__ to be directly referenced from host code

I __constant__
I variable resides on device in constant memory
I has lifetime of application
I accessible from all threads in grid
I accessible from host through library functions

I __shared__
I variable resides in shared memory space of one block
I has lifetime of the block
I only accessible by all threads in that block

I nothing: thread-local variable

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 14

Variable type qualifiers

I __device__
I may be used in conjunction with __constant__ or __shared__
I when alone, variable resides in global memory space on device
I has lifetime of application
I is accessible from all threads within the grid
I is accessible from host through library functions
I may be used with __managed__ to be directly referenced from host code

I __constant__
I variable resides on device in constant memory
I has lifetime of application
I accessible from all threads in grid
I accessible from host through library functions

I __shared__
I variable resides in shared memory space of one block
I has lifetime of the block
I only accessible by all threads in that block

I nothing: thread-local variable

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 14

Variable type qualifiers

I __device__
I may be used in conjunction with __constant__ or __shared__
I when alone, variable resides in global memory space on device
I has lifetime of application
I is accessible from all threads within the grid
I is accessible from host through library functions
I may be used with __managed__ to be directly referenced from host code

I __constant__
I variable resides on device in constant memory
I has lifetime of application
I accessible from all threads in grid
I accessible from host through library functions

I __shared__
I variable resides in shared memory space of one block
I has lifetime of the block
I only accessible by all threads in that block

I nothing: thread-local variable

S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 14

Variable type qualifiers

I __device__
I may be used in conjunction with __constant__ or __shared__
I when alone, variable resides in global memory space on device
I has lifetime of application
I is accessible from all threads within the grid
I is accessible from host through library functions
I may be used with __managed__ to be directly referenced from host code

I __constant__
I variable resides on device in constant memory
I has lifetime of application
I accessible from all threads in grid
I accessible from host through library functions

I __shared__
I variable resides in shared memory space of one block
I has lifetime of the block
I only accessible by all threads in that block

I nothing: thread-local variable
S.F. Siegel � CISC 372: Parallel Computing � CUDA 1 14

