CISC 372: Parallel Computing
Exam 2 Review

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

Reference sheet

» you will be given a sheet with signatures of all functions needed

» also list of type names and constants
P also basic pragmas in OpenMP

» you have to know what they mean, the syntax, and how to use the functions and other
language primitives

» you may bring up to two (2) sheets of 8.5x11 sheets of paper with anything written on
them you want

» you can not use any notes on your computer or other devices

S.F. Siegel CISC 372: Parallel Computing < Exam 2 Review 2

Summary

VVyVYVYVVVYVYYVYY

multithreaded programming

starting threads, joining threads

communication and coordination with shared variables

mutexes, condition variables, and concurrency flags

data races and deadlocks: how to recognize them and how to avoid them
critical sections, producer/consumer problems, and barrier algorithms
directive-based multithreaded-programming and OpenMP

private vs. shared variables

work-sharing and loop distribution strategies

hybrid MPl+threads programming

pthread_t

> a type
» a “thread ID" or reference to a running thread
» an opaque object
P you cannot perform any operations on something of type pthread_t

» you can only use that thing as an argument to functions in the Pthreads library
> you don't know how it is actually defined

> it may be a pointer, or an int, or ...
» completely up to the Pthread implementation

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 4

pthread_create

int pthread_create(pthread_t * thread,

pthread_attr_t * attr,
void *(*start_routine) (voidx),
void * arg);

pthread_create(thread, attr, start_routine, arg)

thread

attr
start_routine
arg

where ID of new thread is returned (pthread_t*)
thread attributes, can be NULL (pthread_attr_t*)
function to run in new thread (void *(*) (voidx))
argument to provide to start_routine (voidx)

Note: start_routine consumes a void* and returns a voidx*

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 5

pthread_join

int pthread_join(pthread_t thread, void **value_ptr);

pthread_join(thread, value_ptr)

thread ID of thread to wait on (pthread_t)
value_ptr address in which to store return val (void*x)

» blocks until the specified thread terminates

» deallocates the thread resources

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 6

Data races

A data race occurs whenever two threads access the same memory location concurrently,
without proper synchronization, and at least one of the accesses is a write.
le.:

» one thread reads and the other writes, OR
» both threads write

A data race in a Pthreads program results in undefined behavior.
The program could do “anything” (crash, return weird results,. . .)
You can not assume the value written will be one of the two possible “reasonable” values.

» it is the programmer’s responsibility to avoid all data races

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 7

Question

Suppose two threads can access a shared variable x and execute as follows:

Thread 1: x=1;
Thread 2: x=1;

Is there a data race?

A. Yes
B. No

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 8

Question

Suppose two threads can access a shared variable x and execute as follows:

Thread 1: x=1;
Thread 2: x=1;

Is there a data race?

A. Yes
B. No

Yes! write-write

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 8

Mutexes

-

mutex = “mutual exclusion lock”

used to guarantee that at most one thread can access a shared object at any time
supports “lock” and “unlock” operations

example: a single mutex is used to control access to sum

each thread obtains the lock before reading and modifying sum

...and releases lock when it is done

vVVvyVvyVvVvYyYVvyy

a thread will block when trying to obtain the lock if another thread owns the lock

S.F. Siegel CISC 372: Parallel Computing < Exam 2 Review 9

Using mutexes to enforce critical sections

P> a mutex is typically used to control access to some shared data
» this is purely a programming convention

» no formal relationship between the mutex and the data
» programmer should document the relationship clearly

» typical control flow:

1. obtain lock;
2. access the shared data;
3. release the lock;

» do this wherever the data is accessed!
> if you miss one case, all bets are off

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 10

Pthreads mutex interface

> type

>

v

> pthread_mutex_t : opaque handle to a mutex
functions

int pthread_mutex_init(pthread_mutex_t * mutex,
pthread_mutexattr_t * attr);
int pthread_mutex_destroy(pthread_mutex_t * mutex);
int pthread_mutex_lock(pthread_mutex_t * mutex);
int pthread_mutex_unlock(pthread_mutex_t * mutex);

use NULL for the attribute argument for now
all functions return error code (O=success)

see add_fix.c

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 11

Condition variables

» a condition variable ¢ is used with a mutex

> when a thread owns the mutex, it may want to wait until some condition holds (due to
actions of other threads)

» it can do this by waiting on ¢

» this reliquishes the locks and the thread goes to sleep

» other threads run

» at some point in future, another thread can issue a notification on ¢

» the thread that is asleep may be notified

» it wakes up and has the opportunity to regain the lock once the thread owning the lock
relinquishes it

» typically, after the thread wakes up, it will check some condition

» if the condition holds, great, it continues running with the lock

> otherwise, it waits again (loops are good for this)

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 12

Condition variables in Pthreads

» pthread_cond_init(pthread_cond_t * cond, NULL)
> initialize a condition variable
» int pthread_cond_destroy(pthread_cond_t *cond);
» destroy the previously initialized condition variable
» int pthread_cond_signal(pthread_cond_t *cond) ;
» wake up one or more threads waiting on cond
» int pthread_cond_broadcast(pthread_cond_t *cond);
> wake up all threads waiting on cond
» int pthread_cond_wait(pthread_cond_t * cond, pthread_mutex_t * mutex);

1. release lock on mutex
2. go to sleep
3. when woken up: try to regain lock on mutex

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 13

Semantics of condition variables

» every thread is either running, blocked waiting for lock, or asleep
> an asleep thread is not contending for resources/consuming CPU cycles
» note: | am using “asleep” here in a non-standard sense
» state of condition variable: set of waiting threads
> wait
P> release lock on mutex, state changes from running to asleep, thread added to cond’s wait set
» when signaled: state changes from asleep to blocked, thread removed from cond's set
» later the thread may regain the lock on mutex, just like any other thread trying to unlock
mutex

» signal

» changes state of one or more waiting threads as above, removes them from waiting set
» usually called from thread that owns lock on mutex, but not required by Pthreads

» broadcast: signals all waiting threads, waitset become empty

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 14

Typical pattern for using condition variables

obtain lock on mutex;

while (lexpr) {

wait on cond;
}
// at this point you know expr holds
// assuming expr can only be changed
// by a thread holding lock on mutex!

release lock on mutex;

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 15

Question 1: condition variable

When a thread calls wait on a condition variable and mutex, it should own the mutex.

[A] True
[B] False

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 16

Question 1: condition variable

When a thread calls wait on a condition variable and mutex, it should own the mutex.

[A] True
[B] False

True

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 16

Question 2: condition variable

When a thread calls signal on a condition variable, every thread waiting on that condition
variable will “wake up”.

[A] True
[B] False

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 17

Question 2: condition variable

When a thread calls signal on a condition variable, every thread waiting on that condition
variable will “wake up”.

[A] True
[B] False

False

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 17

Question 3: condition variable

When a waiting thread receives a signal, it will automatically re-obtain the mutex lock.

[A] True
[B] False

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 18

Question 3: condition variable
When a waiting thread receives a signal, it will automatically re-obtain the mutex lock.

[A] True
[B] False

False

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 18

Question 4: condition variable

When a waiting thread receives a signal and regains the lock, the condition upon which it was
waiting must hold.

[A] True
[B] False

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 19

Question 4: condition variable

When a waiting thread receives a signal and regains the lock, the condition upon which it was
waiting must hold.

[A] True
[B] False

False

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 19

Concurrency flags

S.F. Siegel o

CISC 372: Parallel Computing

<o Exam 2 Review

20

Concurrency flags

» a flag is a boolean variable

S.F. Siegel o CISC 372: Parallel Computing

o

Exam 2 Review

20

Concurrency flags

» a flag is a boolean variable
» a concurrency flag is a shared boolean variable used in a particular disciplined way
» also known as a “binary semaphore”

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 20

Concurrency flags

» a flag is a boolean variable
» a concurrency flag is a shared boolean variable used in a particular disciplined way
» also known as a “binary semaphore”

» concurrency flags are basic concurrency building blocks

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 20

Concurrency flags

» a flag is a boolean variable

» a concurrency flag is a shared boolean variable used in a particular disciplined way
» also known as a “binary semaphore”

» concurrency flags are basic concurrency building blocks

» can be used to construct all kinds of complex synchronization patterns and data structures
» mutual exclusion protocols, barriers, reductions, ...

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 20

Concurrency flags

» a flag is a boolean variable
» a concurrency flag is a shared boolean variable used in a particular disciplined way
» also known as a “binary semaphore”
» concurrency flags are basic concurrency building blocks
» can be used to construct all kinds of complex synchronization patterns and data structures

» mutual exclusion protocols, barriers, reductions, ...

> state: a flag has two values, 0 and 1

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 20

Concurrency flags

» a flag is a boolean variable

» a concurrency flag is a shared boolean variable used in a particular disciplined way
» also known as a “binary semaphore”

» concurrency flags are basic concurrency building blocks

» can be used to construct all kinds of complex synchronization patterns and data structures
» mutual exclusion protocols, barriers, reductions, ...

> state: a flag has two values, 0 and 1

» atomic operations

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 20

Concurrency flags

» a flag is a boolean variable

» a concurrency flag is a shared boolean variable used in a particular disciplined way
» also known as a “binary semaphore”

» concurrency flags are basic concurrency building blocks

» can be used to construct all kinds of complex synchronization patterns and data structures
» mutual exclusion protocols, barriers, reductions, ...

> state: a flag has two values, 0 and 1

» atomic operations
» raise

» can only be invoked when value is 0, otherwise error
> sets value to 1

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 20

Concurrency flags

» a flag is a boolean variable

» a concurrency flag is a shared boolean variable used in a particular disciplined way
» also known as a “binary semaphore”

» concurrency flags are basic concurrency building blocks

» can be used to construct all kinds of complex synchronization patterns and data structures
» mutual exclusion protocols, barriers, reductions, ...

> state: a flag has two values, 0 and 1

» atomic operations

» raise

» can only be invoked when value is 0, otherwise error
> sets value to 1

» lower

» blocks until value is 1, then sets value to 0 in one atomic step
» no other thread can perform any operation on flag between check that value is 1 and set to 0

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 20

Interface for flags: flag.h

S.F. Siegel

typedef ... flag_t;

/* Initializes the flag with the given value. Must be called before
the first time the flag is used. */
void flag_init(flag_t * £, _Bool val);

/* Destroys the flag */
void flag_destroy(flag_t * f);

/* Increments f atomically, and returns the result. Notifies threads
waiting for a change on f. An assertion is violated if f is 1 when
this function is called. */

void flag_raise(flag_t * f);

/* Waits for f to be 1, then sets it to 0, all atomically. */
void flag_lower(flag_t * f);

CISC 372: Parallel Computing < Exam 2 Review 21

Synchronization patterns: barriers

S.F. Siegel <o CISC 372: Parallel Computing <o Exam 2 Review

22

Synchronization patterns: barriers

A very common pattern in multi-threaded programs:

while (true) {
compute something;
barrier();

}

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 22

Synchronization patterns: barriers

A very common pattern in multi-threaded programs:

while (true) {
compute something;
barrier();

}

» barrier(): no thread can leave until every thread has entered

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 22

Synchronization patterns: barriers

A very common pattern in multi-threaded programs:

while (true) {
compute something;
barrier();

}

» barrier(): no thread can leave until every thread has entered

» thread 1 needs to read something produced by thread 2 in previous iteration

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 22

Synchronization patterns: barriers

A very common pattern in multi-threaded programs:

while (true) {
compute something;
barrier();

}

» barrier(): no thread can leave until every thread has entered
» thread 1 needs to read something produced by thread 2 in previous iteration

» how to construct a “barrier” for threads?

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 22

Synchronization patterns: barriers

A very common pattern in multi-threaded programs:

while (true) {
compute something;
barrier();

}

» barrier(): no thread can leave until every thread has entered
» thread 1 needs to read something produced by thread 2 in previous iteration
» how to construct a “barrier” for threads?

» many ways, using synchronization primitives we have already learned

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 22

Synchronization patterns: barriers

A very common pattern in multi-threaded programs:

while (true) {
compute something;
barrier();

}

barrier(): no thread can leave until every thread has entered

thread 1 needs to read something produced by thread 2 in previous iteration

| 2

>

» how to construct a “barrier” for threads?

» many ways, using synchronization primitives we have already learned
| 2

solutions differ in their performance charactertistics

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 22

Synchronization patterns: barriers

A very common pattern in multi-threaded programs:

while (true) {
compute something;
barrier();

}

barrier(): no thread can leave until every thread has entered

thread 1 needs to read something produced by thread 2 in previous iteration
how to construct a “barrier” for threads?

many ways, using synchronization primitives we have already learned

solutions differ in their performance charactertistics

vvyvyVvyyvyy

desired characteristics of barriers:
1. no one leaves until everyone enters
2. no unnecessary delay: after last thread enters, everyone can leave without further delay

3. reuseable : need to use the same barrier object over and over
S.F. Siegel CISC 372: Parallel Computing < Exam 2 Review 22

A 2-thread barrier using flags

» two flags are used £1 and £2

> f1 is used by Thread 1 to send a signal to Thread 2 saying “| have arrived at barrier”
» £2 is used by Thread 2 to send a signal to Thread 1 saying “l have arrived at barrier”

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 23

A 2-thread barrier using flags

» two flags are used £1 and £2

> f1 is used by Thread 1 to send a signal to Thread 2 saying “| have arrived at barrier”
» £2 is used by Thread 2 to send a signal to Thread 1 saying “l have arrived at barrier”

» Thread 1

1. raises f1
2. lowers £2

» Thread 2

1. lowers £1
2. raises £2

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 23

A 2-thread barrier using flags

» two flags are used £1 and £2
> 1 is used by Thread 1 to send a signal to Thread 2 saying "l have arrived at barrier'
» £2 is used by Thread 2 to send a signal to Thread 1 saying “l have arrived at barrier”
» Thread 1
1. raises f1
2. lowers £2
» Thread 2

1. lowers £1
2. raises £2

Is it a correct, re-useable barrier with no unnecessary delay?

See 2barrier.c.
General n-thread barrier implementations: counter barrier, coordinator barrier, combining tree

barrier, butterfly barrier, dissemination barrier.

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 23

Dissemination Barrier: dissem_barrier.c

S.F. Siegel o CISC 372: Parallel Computing o Exam 2 Review 24

Dissemination Barrier: dissem_barrier.c

» butterfly requires n to be power of 2 or have exceptional code which breaks symmetry

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 24

Dissemination Barrier: dissem_barrier.c

» butterfly requires n to be power of 2 or have exceptional code which breaks symmetry
» dissemination barrier works for any n

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 24

Dissemination Barrier: dissem_barrier.c

» butterfly requires n to be power of 2 or have exceptional code which breaks symmetry
» dissemination barrier works for any n
» uses cyclic order of threads

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 24

Dissemination Barrier: dissem_barrier.c

» butterfly requires n to be power of 2 or have exceptional code which breaks symmetry
» dissemination barrier works for any n

» uses cyclic order of threads

> two flags (a and b) for each thread, in each stage

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 24

Dissemination Barrier: dissem_barrier.c

v

butterfly requires n to be power of 2 or have exceptional code which breaks symmetry
dissemination barrier works for any n

uses cyclic order of threads

two flags (a and b) for each thread, in each stage

in stage i each thread

» synchs with thread 2’: to the right using a and b flags of that thread
» synchs with thread 2' to the left using its a and b flags

> stages: 0 </ < [log, n]

vvyYyy

012 3 45

stage O

stage 1

stage 2

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 24

Dissemination barrier: code

for (int stage=0, i=1; stage<nstages; stage++, i*=2) {
flag_raise(&bs->a[stage] [(tid+i)¥%nthreads]);
flag_lower (&bs->a[stage] [tid]);
flag_raise(&bs->b[stage] [tid]);
flag_lower (&bs->b[stage] [(tid+i)¥nthreads]);

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 25

OpenMP: the parallel directive

vy

vVvyVvyVvyYyvyy

>

#pragma omp parallel [clauses]
S

a program begins execution with one thread

executing a parallel directive creates a parallel region
when control enters the region, a team of threads is created
P the team includes the original thread, known as the master thread

all of the threads in the team execute the statement S concurrently
S is typically a big compound statement

additional directives inside S control how threads in the team behave
at the end of S there is an implicit barrier

all threads join up at this point

all threads other than the master essentially disappear

the master continues eXGCUtIOﬂ

S.F. Siegel < C 372: Parallel Computing Exam 2 Review 26

hellol.c: parallel directive example
#include <stdio.h>

int main (int argc, char xargv[]) {
printf ("I am the master.\n"); // just the master
#pragma omp parallel
{
printf("Hello, world.\n"); // all threads
} /* end of parallel region */
printf ("Goodbye, world.\n"); // just the master

omp$ gcc-mp-4.8 -fopenmp hellol.c
omp$./a.out

I am the master.

Hello, world.

Hello, world.

Goodbye, world.

omp$

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 27

Basic OMP functions

» need to #include <omp.h>
> int omp_get_num_threads()

» returns the number of threads in the team in the current region
> int omp_get_thread_num()

» returns the ID of the calling thread

» threads within a team are numbered 0,1, ...
P> master thread is always thread 0

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 28

Private vs. shared variables

» if a variable is declared within the parallel region, all threads have their own copy of that
variable
» if a variable is declared before the parallel region and is visible in the region, you have a
choice: variable can be
» private: all threads have their own copy, or
» shared: one shared variable
» specify what you want by clauses of the form
» shared(ul,u2,...)
» private(vi,v2,...)
> some (obvious) points
» the ul,u2,...and v1,v2,... must all be visible at this point
> a variable cannot be both shared and private

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 29

The default clause

» sets the default for private vs. shared in the parallel region
» default(none)

» no default
> every variable used in parallel region must be explicitly listed in shared or private

» default(shared)
> if not listed, the variable is shared
» there are rules specifying what happens if you don't have a default clause

» but ignore them for now
> explicitly declare every variable used in the region as either private or shared

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 30

hellod.c

#include <omp.h>
#include <stdio.h>

int main () {
int nthreads, tid;

#pragma omp parallel private(tid) shared(nthreads)
{
tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);
if (tid == 0) { // only master
nthreads = omp_get_num_threads();
printf ("Number of threads = %d\n", nthreads);
}
} // end of parallel region
}

S.F. Siegel CISC 372: Parallel Computing < Exam 2 Review 31

num_threads (): requesting the number of threads

» you can request that the team have a specified number of threads
» clause: num_threads (expr)
P> where expr is an expression which evaluates to a positive integer

» the runtime system may give you the requested number of threads, or it may give you fewer

» if you really need to know how many there are, ask

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 32

The threadprivate directive

» consider the program semiprivate.c. What is the output?

S.F. Siegel

<

#include <stdio.h>
#include <omp.h>
int x = 99;
void £() {
x=omp_get_thread_num() ;
}
int main() {
#pragma omp parallel private(x) num_threads(5)
{
int tid = omp_get_thread_num();
£0;
printf ("Thread %d: x = %d\n", tid, x);

rintf("Final x = %d\n", x);
s ’
CISC 372: Parallel Computing < Exam 2 Review 33

semiprivate.c: output

omp$ gcc-mp-4.8 -fopenmp semiprivate.c
omp$./a.out

Thread 1: x = -348111896

Thread 2: x = -348111896

Thread 3: x = -348111896
Thread 4: x = 19907219
Thread 0: x = 0

Final x = 0

omp$

Why?

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 34

semiprivate.c: output

omp$ gcc-mp-4.8 -fopenmp semiprivate.c
omp$./a.out

Thread 1: x = -348111896

Thread 2: x = -348111896

Thread 3: x = -348111896
Thread 4: x = 19907219
Thread 0: x = 0

Final x = 0

omp$

Why?
> the private clause affects only references to the variable inside the construct (the static
extent), not the region (dynamic extent).

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 34

semiprivate.c: output

omp$ gcc-mp-4.8 -fopenmp semiprivate.c
omp$./a.out

Thread 1: x = -348111896

Thread 2: x = -348111896

Thread 3: x = -348111896
Thread 4: x = 19907219
Thread 0: x = 0

Final x = 0

omp$

Why?
> the private clause affects only references to the variable inside the construct (the static
extent), not the region (dynamic extent).

> if you want x to be private everywhere, you need to use the threadprivate directive.

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 34

threadprivate.c

#include <stdio.h>
#include <omp.h>

int x;
#pragma omp threadprivate(x)
void £ {

// this updates the private copy of x...
x=omp_get_thread_num();

}

int main() {

#pragma omp parallel num_threads(5)

{

int tid = omp_get_thread_num();

103

printf ("Thread %d: x = %d\n", tid, x);
}

printf("Final x = %d\n", x);
}

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 35

threadprivate.c: output

S.F. Siegel

<&

omp$./a.out

Thread 1: x =
Thread 2:
Thread O:
Thread 3:
Thread 4:
Final x =
omp$

O M M M M
I

> W o NN

CISC 372: Parallel Computing <

Exam 2 Review

36

threadprivate.c: output

omp$./a.out

Thread 1: x =
Thread 2:
Thread O:
Thread 3:
Thread 4:
Final x =
omp$

O M M MW M
non
> W o NN

» use this when you have a global variable you wish to share between functions
» and you want it private

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 36

threadprivate.c: output

omp$./a.out

Thread 1: x =
Thread 2:
Thread O:
Thread 3:
Thread 4:
Final x =
omp$

O M M MW M
non
> W o NN

» use this when you have a global variable you wish to share between functions
» and you want it private
» you can even make the shared variable persist between parallel regions

P certain requirements must be met
» in particular, all the parallel regions in which variable is used must have same number of
threads

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 36

threadprivate.c: output

omp$./a.out

Thread 1: x =
Thread 2:
Thread O:
Thread 3:
Thread 4:
Final x =
omp$

O M M MW M
non
> W o NN

» use this when you have a global variable you wish to share between functions
» and you want it private
» you can even make the shared variable persist between parallel regions

P certain requirements must be met
» in particular, all the parallel regions in which variable is used must have same number of
threads

» note the variable must be initialized inside a parallel region before it is used

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 36

Work-sharing

» you usually don’t want all threads in the team to do the same thing

» you can code in branches on thread ID manually, but this is very tedious
» OpenMP provides more convenient, higher-level constructs

P these are specified using directives within a parallel region
» one class of such constructs are the work-sharing constructs

P these specify how work is to be divided up among members of the team
» kinds of work-sharing constructs

» for loops: distribute iterations to team members

> sections: distribute independent code bocks (work units)

» single: let only one thread execute a block

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 37

Worksharing constructs: for loops

S.F. Siegel o CISC 372: Parallel Computing o Exam 2 Review

38

Worksharing constructs: for loops

» syntax

#pragma omp for [clauses]
for (init-expr; var relop b; incr-expr)
body

S.F. Siegel o CISC 372: Parallel Computing <o Exam 2 Review 38

Worksharing constructs: for loops

» syntax

#pragma omp for [clauses]
for (init-expr; var relop b; incr-expr)
body

» semantics
» each iteration is executed by exactly one thread in the team

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 38

Worksharing constructs: for loops

» syntax

#pragma omp for [clauses]
for (init-expr; var relop b; incr-expr)
body

» semantics

» each iteration is executed by exactly one thread in the team
» barrier at end of loop

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 38

Worksharing constructs: for loops

» syntax

#pragma omp for [clauses]
for (init-expr; var relop b; incr-expr)
body

» semantics

» each iteration is executed by exactly one thread in the team
» barrier at end of loop
P in general, everything else is unspecified
» how the iterations are distributed among the team members
» the order in which the iterations are executed
» what happens concurrently

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 38

Worksharing constructs: for loops

» syntax

#pragma omp for [clauses]
for (init-expr; var relop b; incr-expr)
body

» semantics

» each iteration is executed by exactly one thread in the team
» barrier at end of loop
P in general, everything else is unspecified

» how the iterations are distributed among the team members
» the order in which the iterations are executed
» what happens concurrently

» syntactic restrictions on the for statement:

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 38

Worksharing constructs: for loops

» syntax

#pragma omp for [clauses]
for (init-expr; var relop b; incr-expr)
body

» semantics

» each iteration is executed by exactly one thread in the team
» barrier at end of loop
P in general, everything else is unspecified
» how the iterations are distributed among the team members
» the order in which the iterations are executed
» what happens concurrently

» syntactic restrictions on the for statement:
> init-expr: var = expr, integer type
P> relop is one of: <, <=, > >=
P> b is a loop-invariant integer expression
P incr-expr has one of a few forms; see OpenMP 4.0 Standard, Section 2.6

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 38

Allowed forms for increment expression in for loop

++var

var++

--var

var—--

var += incr

var -= incr

var = var + incr

var = incr + var

VVyVYVYVYVVYVYY

var = var - incr

S.F. Siegel o CISC 372: Parallel Computing <o Exam 2 Review 39

Allowed forms for increment expression in for loop

++var
var++
--var
var—--
var += incr
var -= incr

var = var + incr

vVVvVyVvyVvVYyVvYVvYyyYy

var = incr + var
» var = var - incr

where incr is a loop invariant integer expression

S.F. Siegel o CISC 372: Parallel Computing <o Exam 2 Review 39

Allowed forms for increment expression in for loop

++var
var++
--var
var—--
var += incr
var -= incr

var = var + incr

vVVvVyVvyVvVYyVvYVvYyyYy

var = incr + var
» var = var - incr
where incr is a loop invariant integer expression

» i.e., throughout one execution of the loop
» incr will have the same value each time control reaches the top of the loop

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 39

Allowed forms for increment expression in for loop

++var
var++
--var
var—--
var += incr
var -= incr

var = var + incr

vVVvVyVvyVvVYyVvYVvYyyYy

var = incr + var
» var = var - incr
where incr is a loop invariant integer expression

» i.e., throughout one execution of the loop
» incr will have the same value each time control reaches the top of the loop

» however incr could have different values in different loop executions

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 39

Clauses for the for loop directive

» private(vi,v2,...)
» make a shared variable private for the duration of the loop

S.F. Siegel o CISC 372: Parallel Computing <o Exam 2 Review 40

Clauses for the for loop directive

» private(vi,v2,...)

» make a shared variable private for the duration of the loop
» firstprivate(vl,v2,...)

» make a variable private and initialize it in every thread

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 40

Clauses for the for loop directive

» private(vi,v2,...)
» make a shared variable private for the duration of the loop
» firstprivate(vl,v2,...)
» make a variable private and initialize it in every thread
» lastprivate(vi,v2,...)
» make a variable private and copy the final value of variable in the last iteration back to the
shared variable at end

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 40

Clauses for the for loop directive

» private(vi,v2,...)
» make a shared variable private for the duration of the loop
» firstprivate(vl,v2,...)
» make a variable private and initialize it in every thread
» lastprivate(vi,v2,...)
» make a variable private and copy the final value of variable in the last iteration back to the
shared variable at end
» reduction(...)
> apply some associative and commutative operation (like +) across all iterations for some
variable

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 40

Clauses for the for loop directive

» private(vi,v2,...)
» make a shared variable private for the duration of the loop
» firstprivate(vl,v2,...)
» make a variable private and initialize it in every thread
» lastprivate(vi,v2,...)
» make a variable private and copy the final value of variable in the last iteration back to the
shared variable at end
» reduction(...)
> apply some associative and commutative operation (like +) across all iterations for some
variable

» ordered: declares that an ordered construct may occur in loop body

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 40

Clauses for the for loop directive

» private(vi,v2,...)
» make a shared variable private for the duration of the loop
» firstprivate(vl,v2,...)
» make a variable private and initialize it in every thread
» lastprivate(vi,v2,...)
» make a variable private and copy the final value of variable in the last iteration back to the
shared variable at end
» reduction(...)
> apply some associative and commutative operation (like +) across all iterations for some
variable
» ordered: declares that an ordered construct may occur in loop body

» schedule: options to control how iterations are distributed to threads

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 40

Clauses for the for loop directive

| 2

>

| 2

private(vi,v2,...)
» make a shared variable private for the duration of the loop
firstprivate(vli,v2,...)
» make a variable private and initialize it in every thread
lastprivate(vl,v2,...)
» make a variable private and copy the final value of variable in the last iteration back to the
shared variable at end
reduction(...)
> apply some associative and commutative operation (like +) across all iterations for some
variable
ordered: declares that an ordered construct may occur in loop body
schedule: options to control how iterations are distributed to threads

nowait: remove the barrier at the end of the loop

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 40

Clauses for the for loop directive

» private(vi,v2,...)
» make a shared variable private for the duration of the loop

» firstprivate(vl,v2,...)
» make a variable private and initialize it in every thread

» lastprivate(vi,v2,...)
» make a variable private and copy the final value of variable in the last iteration back to the

shared variable at end
» reduction(...)
> apply some associative and commutative operation (like +) across all iterations for some

variable

ordered: declares that an ordered construct may occur in loop body

schedule: options to control how iterations are distributed to threads

nowait: remove the barrier at the end of the loop
collapse(n): apply directive to next n loops in loop nest
P nis an expression that evaluates to a positive integer
P iteration space of the n loops is collapsed into a single space

» the iterations in the resulting space are distributed to threads
< CISC 372: Parallel Computing < Exam 2 Review 40

vvyyvyy

S.F. Siegel

Question

Can this loop be parallelized with an OpenMP for construct?

for (i=0; i<n && al[i]>0; i++)
b[i] = bl[i] - alil;

A. Yes
B. No

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 41

Question
Can this loop be parallelized with an OpenMP for construct?
for (i=0; i<n && al[i]>0; i++)
bl[i] = bli] - alil;
A. Yes
B. No

No! Condition not in standard form.

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 41

Reductions: reduction(reduction-identifier : 1list)

S.F. Siegel o CISC 372: Parallel Computing o Exam 2 Review 42

Reductions: reduction(reduction-identifier : 1list)

» this is another clause that can be added to an omp for directive

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 42

Reductions: reduction(reduction-identifier : 1list)

» this is another clause that can be added to an omp for directive

» performs an (approximately) associative and commutative operation across all threads

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 42

Reductions: reduction(reduction-identifier : 1list)

» this is another clause that can be added to an omp for directive
» performs an (approximately) associative and commutative operation across all threads

» each variable v in the list should be a shared variable

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 42

Reductions: reduction(reduction-identifier : 1list)

» this is another clause that can be added to an omp for directive
» performs an (approximately) associative and commutative operation across all threads
» each variable v in the list should be a shared variable

» v should be initialized before entering the loop

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 42

Reductions: reduction(reduction-identifier : 1list)

this is another clause that can be added to an omp for directive
performs an (approximately) associative and commutative operation across all threads
each variable v in the list should be a shared variable

v should be initialized before entering the loop

vVvyyvyyvyy

effectively, a private copy of v is created

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 42

Reductions: reduction(reduction-identifier : 1list)

this is another clause that can be added to an omp for directive

performs an (approximately) associative and commutative operation across all threads
each variable v in the list should be a shared variable

v should be initialized before entering the loop

effectively, a private copy of v is created

vvyvyVvyyVvyy

each private v is initialized to the default initial value corresponding to the operation
» 0 for +, 1 for *, etc.

S.F. Siegel CISC 372: Parallel Computing < Exam 2 Review 42

Reductions: reduction(reduction-identifier : 1list)

this is another clause that can be added to an omp for directive

performs an (approximately) associative and commutative operation across all threads
each variable v in the list should be a shared variable

v should be initialized before entering the loop

effectively, a private copy of v is created

vvyvyVvyyVvyy

each private v is initialized to the default initial value corresponding to the operation
» 0 for +, 1 for *, etc.

v

all operations in loop body take place on the private copies

S.F. Siegel CISC 372: Parallel Computing < Exam 2 Review 42

Reductions: reduction(reduction-identifier : 1list)

this is another clause that can be added to an omp for directive

performs an (approximately) associative and commutative operation across all threads
each variable v in the list should be a shared variable

v should be initialized before entering the loop

effectively, a private copy of v is created

vvyvyVvyyVvyy

each private v is initialized to the default initial value corresponding to the operation
» 0 for +, 1 for *, etc.

v

all operations in loop body take place on the private copies
» when a thread finishes its iterations:

> it adds (or whatever the operation is) its private value back to the shared v
» this happens atomically to prevent races

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 42

Reduction example: reduce.c

S.F. Siegel

<

#include <stdio.h>
#include <omp.h>
#define n 10
int al[n], s=1000000;
int main() {
printf("Start s = %d\n", s);
#pragma omp parallel default(none) shared(a,s)
{
int tid = omp_get_thread_num();
#pragma omp for
for (int i=0; i<n; i++) ali] = i;
#pragma omp for reduction(+:s) schedule(static,1)
for (int i=0; i<n; i++) {
s+=a[il;
printf("Local s on thread %d = %d\n", tid, s);
}
}
printf("Final s = %d\n", s);
}

CISC 372: Parallel Computing < Exam 2 Review 43

Reduction example: output

omp$ make run-reduce
gcc-mp-4.8 -fopenmp -o reduce reduce.c
./reduce
Start s = 1000000
Local s on thread 0 = 0
Local s on thread 0 = 2
Local s on thread 0 = 6
Local s on thread 0 = 12
Local s on thread 0 = 20
Local s on thread 1 =1
Local s on thread 1 = 4
Local s on thread 1 = 9
Local s on thread 1 = 16
Local s on thread 1 = 25
Final s = 1000045
omp$

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 44

Reduction operations

operation operator initial value
addition + 0
multiplication * 1
subtraction (?) - 0
bitwise and & ~0
bitwise or | 0
bitwise exclusive or - 0
logical and && 1
logical or] 0

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 45

schedule(static, chunk_size)
iterations are partitioned into chunks of size chunk_size

chunks are distributed in round-robin order to threads

| 2

| 2

» last chunk may be smaller

» distribution is “static”: determined upon reaching the loop
| 2

you can omit chunk_size

» iteration space divided into chunks of approximately equal size
» at most one chunk given to each thread

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 46

schedule(dynamic, chunk_size)

> iterations are partitioned into chunks of size chunk_size
» chunks are distributed to threads as they request them

» similar to the “manager-worker” pattern
» as soon as a thread completes its chunk, it asks for a new one

» last chunk may be smaller
» advantageous when time to execute an iteration varies in an unpredictable way

» distribution is “dynamic”: determined as loop executes

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 47

Worksharing constructs: sections

#pragma omp sections
{

#pragma omp section

#pragma omp section

» specifies explicit code blocks which can execute in parallel

» each block (or section) is executed once, by exactly one thread

» a thread may execute several sections, or no sections

» in general: you cannot assume anything about how sections are distributed to threads

» barrier at end (unless overridden with nowait)

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 48

Worksharing constructs: single

S.F. Siegel o CISC 372: Parallel Computing o Exam 2 Review

49

Worksharing constructs: single

S.F. Siegel

<&

CISC 372: Parallel Computing

#pragma omp single
S

3 Exam 2 Review

49

Worksharing constructs: single

#pragma omp single
S

» indicates that you want only one thread in the team to execute S
» you don't care which thread

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 49

Worksharing constructs: single

#pragma omp single
S

» indicates that you want only one thread in the team to execute S
» you don't care which thread

» barrier at end (unless overridden with nowait)

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 49

Worksharing constructs: single

#pragma omp single
S

» indicates that you want only one thread in the team to execute S
» you don't care which thread

» barrier at end (unless overridden with nowait)

» typical use: initialization of shared variable

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 49

Worksharing constructs: single

#pragma omp single
S

» indicates that you want only one thread in the team to execute S
» you don't care which thread

» barrier at end (unless overridden with nowait)
» typical use: initialization of shared variable
Clauses:

» private(list), firstprivate(list), nowait: usual semantics

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 49

Worksharing constructs: single

#pragma omp single
S

» indicates that you want only one thread in the team to execute S
» you don't care which thread

» barrier at end (unless overridden with nowait)
» typical use: initialization of shared variable
Clauses:

» private(list), firstprivate(list), nowait: usual semantics
» copyprivate(list)

» applies to private variables
» copies final value of variable in the single thread to corresponding variables in all other threads
» copy occurs at end, before threads leave the barrier

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 49

Synchronization constructs

These constructs control synchronization among threads.
» barrier
» ordered
» critical
> atomic
> master
Note:

» except for barrier, these do not impose barriers

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 50

OpenMP loop problems

For each of the following code segments, use OpenMP pragmas to make the loop parallel, or
explain why the code segment is not suitable for parallel execution.

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 51

OpenMP loop problems

For each of the following code segments, use OpenMP pragmas to make the loop parallel, or
explain why the code segment is not suitable for parallel execution.
Choose A if it can be parallelized; B if not.

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 51

OpenMP loop problems

For each of the following code segments, use OpenMP pragmas to make the loop parallel, or
explain why the code segment is not suitable for parallel execution.

Choose A if it can be parallelized; B if not.

Assume a and b are disjoint arrays.

for (int i = 0; i < (int)sqrt(x); i++) {
ali]l = 2.3 * i;
if (i < 10) bli] = alil;

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 51

OpenMP loop problems

For each of the following code segments, use OpenMP pragmas to make the loop parallel, or
explain why the code segment is not suitable for parallel execution.

Choose A if it can be parallelized; B if not.

Assume a and b are disjoint arrays.

for (int i = 0; i < (int)sqrt(x); i++) {
ali]l = 2.3 * i;
if (i < 10) bli] = alil;

#pragma omp parallel for shared(a,b,x)
for (int i = 0; i < (int)sqrt(x); i++) {
ali] = 2.3 * 1i;
if (i < 10) bl[i] = alil;

S.F. Siegel CISC 372: Parallel Computing < Exam 2 Review 51

OpenMP loop problems

flag = 0;

for (int i = 0; (i < n) & (!flag); i++) {
ali] = 2.3 * i;
if (ali]l < b[i]) flag = 1;

}

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 52

OpenMP loop problems

flag = 0;

for (int i = 0; (i < n) & (!flag); i++) {
ali] = 2.3 * i;
if (ali]l < b[i]) flag = 1;

}

No! loop condition not in standard form

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 52

OpenMP loop problems, cont.

Assume foo (i) does not modify array a or i.

for (int i = 0; i < n; i++)
ali] = foo(i);

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review

53

OpenMP loop problems, cont.

Assume foo (i) does not modify array a or i.

for (int i = 0; i < n; i++)
ali] = foo(i);

#pragma omp parallel for shared(a,n)
for (int i = 0; 1 < n; i++)
ali] = foo(i);

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review

53

OpenMP loop problems, cont.
for (int 1 = 0; i < n; i++) {

ali] = foo(i);
if (ali] < b[i]) alil = bl[il;

S.F. Siegel o CISC 372: Parallel Computing o Exam 2 Review

54

OpenMP loop problems, cont.

for (int i = 0; i < n; i++) {
ali] = foo(i);
if (ali] < b[i]) alil = bl[il;

#pragma omp parallel for shared(a,b,n)
for (int 1 = 0; i < n; i++) {
ali] = foo(i);
if (afil < bl[i]) alil = blil;

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review

54

OpenMP loop problems, cont.
for (int 1 = 0; i < n; i++) {

ali] = foo(i);
if (a[i] < b[i]) break;

S.F. Siegel o CISC 372: Parallel Computing o Exam 2 Review

55

OpenMP loop problems, cont.

for (int 1 = 0; i < n; i++) {
ali]l = foo(i);
if (a[i] < b[i]) break;

No! Cannot break out of an OpenMP for loop.

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review

55

OpenMP loop problems, cont.

Attempt to parallelize the nested loop as much as possible:
(N, M, L are constants):

for (int i=0; i<N; i++)
for(int j=0; j<M; j++)
for (int k=0; k<L; k++)
c[i1[j] += alil[k] * blk][j];

S.F. Siegel o CISC 372: Parallel Computing < Exam 2 Review 56

OpenMP loop problems, cont.

Attempt to parallelize the nested loop as much as possible:
(N, M, L are constants):

for (int i=0; i<N; i++)
for(int j=0; j<M; j++)
for (int k=0; k<L; k++)
c[i1[j] += alil[k] * blk][j];

#pragma omp parallel for collapse(2) shared(a,b,c,N,M,L)
for (int i=0; i<N; i++)
for(int j=0; j<M; j++)
for (int k=0; k<L; k++)
clil[j] += alil[k] * blk][j];

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 56

What will this print

Assume the following is executed with exactly 3 threads.
Explain all possible things it could print.

#pragma omp parallel

{
#pragma omp sections
{
#pragma omp section
{
printf ("%d", omp_get_thread num());
}
#pragma omp section
{
printf ("%d", omp_get_thread_num());
}
}
}

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 57

What will this print

Assume the following is executed with exactly 3 threads.
Explain all possible things it could print.

#pragma omp parallel

{
#pragma omp sections
{
#pragma omp section
{
printf ("%d", omp_get_thread num());
}
#pragma omp section
{
printf ("%d", omp_get_thread_num());
}
}
}

Answer: 00, 01, 02, 10, 11, 12, 20, 21, 22

S.F. Siegel < CISC 372: Parallel Computing < Exam 2 Review 57

