
CISC 372: Parallel Computing
CUDA, part 3

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

Synchronization

We will use synchronization at various levels in CUDA:

1. CPU and kernel calls may synchronize

2. different kernel calls may synchronize

3. the threads in a block may synchronize

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 2

CPU and kernel calls may synchronize

I kernel calls execute concurrently with host code

I certain calls block on host until all previous kernels calls complete

kernel_1<<<X,Y>>>(...);

// kernel_1 starts execution, CPU continues to next statement

kernel_2<<<X,Y>>>(...);

// kernel_2 is placed in queue and will start after kernel_1

// finishes, CPU continues to next statement

cudaMemcpy(...);

// CPU blocks until memory is copied, memory copy starts

// only after kernel_2 finishes

When explicit synchronization is needed:
I cudaDeviceSynchronize()

I blocks CPU until all kernel calls complete

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 3

CPU and kernel calls may synchronize

I kernel calls execute concurrently with host code

I certain calls block on host until all previous kernels calls complete

kernel_1<<<X,Y>>>(...);

// kernel_1 starts execution, CPU continues to next statement

kernel_2<<<X,Y>>>(...);

// kernel_2 is placed in queue and will start after kernel_1

// finishes, CPU continues to next statement

cudaMemcpy(...);

// CPU blocks until memory is copied, memory copy starts

// only after kernel_2 finishes

When explicit synchronization is needed:
I cudaDeviceSynchronize()

I blocks CPU until all kernel calls complete

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 3

CPU and kernel calls may synchronize

I kernel calls execute concurrently with host code

I certain calls block on host until all previous kernels calls complete

kernel_1<<<X,Y>>>(...);

// kernel_1 starts execution, CPU continues to next statement

kernel_2<<<X,Y>>>(...);

// kernel_2 is placed in queue and will start after kernel_1

// finishes, CPU continues to next statement

cudaMemcpy(...);

// CPU blocks until memory is copied, memory copy starts

// only after kernel_2 finishes

When explicit synchronization is needed:
I cudaDeviceSynchronize()

I blocks CPU until all kernel calls complete

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 3

CPU and kernel calls may synchronize

I kernel calls execute concurrently with host code

I certain calls block on host until all previous kernels calls complete

kernel_1<<<X,Y>>>(...);

// kernel_1 starts execution, CPU continues to next statement

kernel_2<<<X,Y>>>(...);

// kernel_2 is placed in queue and will start after kernel_1

// finishes, CPU continues to next statement

cudaMemcpy(...);

// CPU blocks until memory is copied, memory copy starts

// only after kernel_2 finishes

When explicit synchronization is needed:
I cudaDeviceSynchronize()

I blocks CPU until all kernel calls complete

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 3

CPU and kernel calls may synchronize

I kernel calls execute concurrently with host code

I certain calls block on host until all previous kernels calls complete

kernel_1<<<X,Y>>>(...);

// kernel_1 starts execution, CPU continues to next statement

kernel_2<<<X,Y>>>(...);

// kernel_2 is placed in queue and will start after kernel_1

// finishes, CPU continues to next statement

cudaMemcpy(...);

// CPU blocks until memory is copied, memory copy starts

// only after kernel_2 finishes

When explicit synchronization is needed:
I cudaDeviceSynchronize()

I blocks CPU until all kernel calls complete

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 3

Synchronization of kernel calls

I in CUDA, it is possible for different kernel calls to execute concurrently
I a more advanced topic; not needed for most tasks

I by default: all kernel calls execute in sequence (in a “stream”)
I the second kernel call will not begin until the first completes
I CUDA runtime maintains a queue of kernel calls

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 4

Synchronization of kernel calls

I in CUDA, it is possible for different kernel calls to execute concurrently
I a more advanced topic; not needed for most tasks

I by default: all kernel calls execute in sequence (in a “stream”)
I the second kernel call will not begin until the first completes
I CUDA runtime maintains a queue of kernel calls

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 4

Synchronization of kernel calls

I in CUDA, it is possible for different kernel calls to execute concurrently
I a more advanced topic; not needed for most tasks

I by default: all kernel calls execute in sequence (in a “stream”)
I the second kernel call will not begin until the first completes
I CUDA runtime maintains a queue of kernel calls

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 4

Synchronization of threads within a block

The threads within a block execute concurrently: a parallel program.
I __syncthreads()

I a barrier on all threads in the block
I a memory fence: all reads and writes made by threads to shared variables complete

I this allows threads in the same block to communicate through shared variables

1. thread 1 writes to shared variable x

2. __syncthreads()

3. thread 2 reads from x

I without the __syncthreads(), there would be a data race
I undefined behavior

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 5

Synchronization of threads within a block

The threads within a block execute concurrently: a parallel program.
I __syncthreads()

I a barrier on all threads in the block
I a memory fence: all reads and writes made by threads to shared variables complete

I this allows threads in the same block to communicate through shared variables

1. thread 1 writes to shared variable x

2. __syncthreads()

3. thread 2 reads from x

I without the __syncthreads(), there would be a data race
I undefined behavior

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 5

Synchronization of threads within a block

The threads within a block execute concurrently: a parallel program.
I __syncthreads()

I a barrier on all threads in the block
I a memory fence: all reads and writes made by threads to shared variables complete

I this allows threads in the same block to communicate through shared variables

1. thread 1 writes to shared variable x

2. __syncthreads()

3. thread 2 reads from x

I without the __syncthreads(), there would be a data race
I undefined behavior

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 5

Synchronization of threads within a block

The threads within a block execute concurrently: a parallel program.
I __syncthreads()

I a barrier on all threads in the block
I a memory fence: all reads and writes made by threads to shared variables complete

I this allows threads in the same block to communicate through shared variables

1. thread 1 writes to shared variable x

2. __syncthreads()

3. thread 2 reads from x

I without the __syncthreads(), there would be a data race
I undefined behavior

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 5

Warps and synchronization

I in the GPU, threads within a block are organized into warps
I typically, 32 threads in a warp

I the threads in a warp execute in lockstep
I each executes the same instruction on the same line of code simultaneously
I the data on which they execute may differ

I what about a branch? if (x>0) S;
I for some threads in the warp, might have x>0, for others, not
I the threads for which the condition is false will block waiting for the other threads in the warp

I what about a branch? if (x>0) S1; else S2;
I first, all the true threads in the warp execute S1; other threads block
I then, all the false threads in the warp execute S2; other threads block

I usually, you don’t have to know about this, except. . .
I performance! with more branch divergence, performance goes down
I __syncthreads. . .

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 6

Warps and synchronization

I in the GPU, threads within a block are organized into warps
I typically, 32 threads in a warp

I the threads in a warp execute in lockstep
I each executes the same instruction on the same line of code simultaneously
I the data on which they execute may differ

I what about a branch? if (x>0) S;
I for some threads in the warp, might have x>0, for others, not
I the threads for which the condition is false will block waiting for the other threads in the warp

I what about a branch? if (x>0) S1; else S2;
I first, all the true threads in the warp execute S1; other threads block
I then, all the false threads in the warp execute S2; other threads block

I usually, you don’t have to know about this, except. . .
I performance! with more branch divergence, performance goes down
I __syncthreads. . .

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 6

Warps and synchronization

I in the GPU, threads within a block are organized into warps
I typically, 32 threads in a warp

I the threads in a warp execute in lockstep
I each executes the same instruction on the same line of code simultaneously
I the data on which they execute may differ

I what about a branch? if (x>0) S;
I for some threads in the warp, might have x>0, for others, not
I the threads for which the condition is false will block waiting for the other threads in the warp

I what about a branch? if (x>0) S1; else S2;
I first, all the true threads in the warp execute S1; other threads block
I then, all the false threads in the warp execute S2; other threads block

I usually, you don’t have to know about this, except. . .
I performance! with more branch divergence, performance goes down
I __syncthreads. . .

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 6

Warps and synchronization

I in the GPU, threads within a block are organized into warps
I typically, 32 threads in a warp

I the threads in a warp execute in lockstep
I each executes the same instruction on the same line of code simultaneously
I the data on which they execute may differ

I what about a branch? if (x>0) S;
I for some threads in the warp, might have x>0, for others, not
I the threads for which the condition is false will block waiting for the other threads in the warp

I what about a branch? if (x>0) S1; else S2;
I first, all the true threads in the warp execute S1; other threads block
I then, all the false threads in the warp execute S2; other threads block

I usually, you don’t have to know about this, except. . .
I performance! with more branch divergence, performance goes down
I __syncthreads. . .

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 6

Warps and synchronization

I in the GPU, threads within a block are organized into warps
I typically, 32 threads in a warp

I the threads in a warp execute in lockstep
I each executes the same instruction on the same line of code simultaneously
I the data on which they execute may differ

I what about a branch? if (x>0) S;
I for some threads in the warp, might have x>0, for others, not
I the threads for which the condition is false will block waiting for the other threads in the warp

I what about a branch? if (x>0) S1; else S2;
I first, all the true threads in the warp execute S1; other threads block
I then, all the false threads in the warp execute S2; other threads block

I usually, you don’t have to know about this, except. . .
I performance! with more branch divergence, performance goes down
I __syncthreads. . .

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 6

Warps and synchronization

I in the GPU, threads within a block are organized into warps
I typically, 32 threads in a warp

I the threads in a warp execute in lockstep
I each executes the same instruction on the same line of code simultaneously
I the data on which they execute may differ

I what about a branch? if (x>0) S;
I for some threads in the warp, might have x>0, for others, not
I the threads for which the condition is false will block waiting for the other threads in the warp

I what about a branch? if (x>0) S1; else S2;
I first, all the true threads in the warp execute S1; other threads block
I then, all the false threads in the warp execute S2; other threads block

I usually, you don’t have to know about this, except. . .
I performance! with more branch divergence, performance goes down
I __syncthreads. . .

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 6

__syncthreads restriction

This code will not work:

if (x>0) {

S1;

__syncthreads();

} else {

S2;

__syncthreads();

}

I the threads taking the false branch
block, waiting for the true threads

I the threads taking the true branch are
stuck inside __syncthreads

. . . deadlock!

Therefore, in CUDA, for a call to
__syncthreads to succeed. . .

I all threads must execute the same
textual occurrence of __syncthreads

This will work:

if (x>0) {

S1;

} else {

S2;

}

__syncthreads();

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 7

__syncthreads restriction
This code will not work:

if (x>0) {

S1;

__syncthreads();

} else {

S2;

__syncthreads();

}

I the threads taking the false branch
block, waiting for the true threads

I the threads taking the true branch are
stuck inside __syncthreads

. . . deadlock!

Therefore, in CUDA, for a call to
__syncthreads to succeed. . .

I all threads must execute the same
textual occurrence of __syncthreads

This will work:

if (x>0) {

S1;

} else {

S2;

}

__syncthreads();

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 7

__syncthreads restriction
This code will not work:

if (x>0) {

S1;

__syncthreads();

} else {

S2;

__syncthreads();

}

I the threads taking the false branch
block, waiting for the true threads

I the threads taking the true branch are
stuck inside __syncthreads

. . . deadlock!

Therefore, in CUDA, for a call to
__syncthreads to succeed. . .

I all threads must execute the same
textual occurrence of __syncthreads

This will work:

if (x>0) {

S1;

} else {

S2;

}

__syncthreads();

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 7

__syncthreads restriction
This code will not work:

if (x>0) {

S1;

__syncthreads();

} else {

S2;

__syncthreads();

}

I the threads taking the false branch
block, waiting for the true threads

I the threads taking the true branch are
stuck inside __syncthreads

. . . deadlock!

Therefore, in CUDA, for a call to
__syncthreads to succeed. . .

I all threads must execute the same
textual occurrence of __syncthreads

This will work:

if (x>0) {

S1;

} else {

S2;

}

__syncthreads();

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 7

__syncthreads restriction
This code will not work:

if (x>0) {

S1;

__syncthreads();

} else {

S2;

__syncthreads();

}

I the threads taking the false branch
block, waiting for the true threads

I the threads taking the true branch are
stuck inside __syncthreads

. . . deadlock!

Therefore, in CUDA, for a call to
__syncthreads to succeed. . .

I all threads must execute the same
textual occurrence of __syncthreads

This will work:

if (x>0) {

S1;

} else {

S2;

}

__syncthreads();

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 7

Shared variables

I shared variables are declared within the kernel scope with __shared__
I arrays can be shared, but length must be a constant expression
I preprocessor macros are good for this

I access to shared variables is very fast
I there is not a lot of shared memory

I 48K bytes on all three types of GPUs available to us
I 48K bytes = 6144 doubles
I at 256 threads per block: 24 doubles per thread
I at 512 threads per block: 12 doubles per thread
I at 1024 threads per block: 6 doubles per thread

I typical use of shared memory:

1. all threads load some value from global memory into shared memory
2. __syncthreads()

3. all threads read the shared values repeatedly

I another typical use: reductions across all threads in a block

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 8

Shared variables

I shared variables are declared within the kernel scope with __shared__
I arrays can be shared, but length must be a constant expression
I preprocessor macros are good for this

I access to shared variables is very fast
I there is not a lot of shared memory

I 48K bytes on all three types of GPUs available to us
I 48K bytes = 6144 doubles
I at 256 threads per block: 24 doubles per thread
I at 512 threads per block: 12 doubles per thread
I at 1024 threads per block: 6 doubles per thread

I typical use of shared memory:

1. all threads load some value from global memory into shared memory
2. __syncthreads()

3. all threads read the shared values repeatedly

I another typical use: reductions across all threads in a block

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 8

Shared variables

I shared variables are declared within the kernel scope with __shared__
I arrays can be shared, but length must be a constant expression
I preprocessor macros are good for this

I access to shared variables is very fast

I there is not a lot of shared memory
I 48K bytes on all three types of GPUs available to us
I 48K bytes = 6144 doubles
I at 256 threads per block: 24 doubles per thread
I at 512 threads per block: 12 doubles per thread
I at 1024 threads per block: 6 doubles per thread

I typical use of shared memory:

1. all threads load some value from global memory into shared memory
2. __syncthreads()

3. all threads read the shared values repeatedly

I another typical use: reductions across all threads in a block

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 8

Shared variables

I shared variables are declared within the kernel scope with __shared__
I arrays can be shared, but length must be a constant expression
I preprocessor macros are good for this

I access to shared variables is very fast
I there is not a lot of shared memory

I 48K bytes on all three types of GPUs available to us
I 48K bytes = 6144 doubles
I at 256 threads per block: 24 doubles per thread
I at 512 threads per block: 12 doubles per thread
I at 1024 threads per block: 6 doubles per thread

I typical use of shared memory:

1. all threads load some value from global memory into shared memory
2. __syncthreads()

3. all threads read the shared values repeatedly

I another typical use: reductions across all threads in a block

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 8

Shared variables

I shared variables are declared within the kernel scope with __shared__
I arrays can be shared, but length must be a constant expression
I preprocessor macros are good for this

I access to shared variables is very fast
I there is not a lot of shared memory

I 48K bytes on all three types of GPUs available to us
I 48K bytes = 6144 doubles
I at 256 threads per block: 24 doubles per thread
I at 512 threads per block: 12 doubles per thread
I at 1024 threads per block: 6 doubles per thread

I typical use of shared memory:

1. all threads load some value from global memory into shared memory
2. __syncthreads()

3. all threads read the shared values repeatedly

I another typical use: reductions across all threads in a block

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 8

Shared variables

I shared variables are declared within the kernel scope with __shared__
I arrays can be shared, but length must be a constant expression
I preprocessor macros are good for this

I access to shared variables is very fast
I there is not a lot of shared memory

I 48K bytes on all three types of GPUs available to us
I 48K bytes = 6144 doubles
I at 256 threads per block: 24 doubles per thread
I at 512 threads per block: 12 doubles per thread
I at 1024 threads per block: 6 doubles per thread

I typical use of shared memory:

1. all threads load some value from global memory into shared memory
2. __syncthreads()

3. all threads read the shared values repeatedly

I another typical use: reductions across all threads in a block

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 8

Example: dot product

I based on example from CUDA by Example, Chapter 5

I two vectors a and b of floats of length N

I compute the dot product of a and b:
I a0b0 + a1b1 + · · ·+ an−1bn−1

I strategy
I fix the number of threads per block (256)
I fix the number of blocks: 120

I unless N is small — then the number of blocks is dN/256e
I cyclic distribution of array of length N
I each thread computes its partial sum
I threads within a block perform a reduction to get sum for that block
I each block writes back its block sum to global memory
I when kernel returns, CPU finishes up the work by adding up the 120 block sums

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 9

Example: dot product

I based on example from CUDA by Example, Chapter 5

I two vectors a and b of floats of length N

I compute the dot product of a and b:
I a0b0 + a1b1 + · · ·+ an−1bn−1

I strategy
I fix the number of threads per block (256)
I fix the number of blocks: 120

I unless N is small — then the number of blocks is dN/256e
I cyclic distribution of array of length N
I each thread computes its partial sum
I threads within a block perform a reduction to get sum for that block
I each block writes back its block sum to global memory
I when kernel returns, CPU finishes up the work by adding up the 120 block sums

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 9

Example: dot product

I based on example from CUDA by Example, Chapter 5

I two vectors a and b of floats of length N

I compute the dot product of a and b:
I a0b0 + a1b1 + · · ·+ an−1bn−1

I strategy
I fix the number of threads per block (256)
I fix the number of blocks: 120

I unless N is small — then the number of blocks is dN/256e
I cyclic distribution of array of length N
I each thread computes its partial sum
I threads within a block perform a reduction to get sum for that block
I each block writes back its block sum to global memory
I when kernel returns, CPU finishes up the work by adding up the 120 block sums

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 9

Example: dot product

I based on example from CUDA by Example, Chapter 5

I two vectors a and b of floats of length N

I compute the dot product of a and b:
I a0b0 + a1b1 + · · ·+ an−1bn−1

I strategy
I fix the number of threads per block (256)

I fix the number of blocks: 120
I unless N is small — then the number of blocks is dN/256e

I cyclic distribution of array of length N
I each thread computes its partial sum
I threads within a block perform a reduction to get sum for that block
I each block writes back its block sum to global memory
I when kernel returns, CPU finishes up the work by adding up the 120 block sums

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 9

Example: dot product

I based on example from CUDA by Example, Chapter 5

I two vectors a and b of floats of length N

I compute the dot product of a and b:
I a0b0 + a1b1 + · · ·+ an−1bn−1

I strategy
I fix the number of threads per block (256)
I fix the number of blocks: 120

I unless N is small — then the number of blocks is dN/256e

I cyclic distribution of array of length N
I each thread computes its partial sum
I threads within a block perform a reduction to get sum for that block
I each block writes back its block sum to global memory
I when kernel returns, CPU finishes up the work by adding up the 120 block sums

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 9

Example: dot product

I based on example from CUDA by Example, Chapter 5

I two vectors a and b of floats of length N

I compute the dot product of a and b:
I a0b0 + a1b1 + · · ·+ an−1bn−1

I strategy
I fix the number of threads per block (256)
I fix the number of blocks: 120

I unless N is small — then the number of blocks is dN/256e
I cyclic distribution of array of length N

I each thread computes its partial sum
I threads within a block perform a reduction to get sum for that block
I each block writes back its block sum to global memory
I when kernel returns, CPU finishes up the work by adding up the 120 block sums

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 9

Example: dot product

I based on example from CUDA by Example, Chapter 5

I two vectors a and b of floats of length N

I compute the dot product of a and b:
I a0b0 + a1b1 + · · ·+ an−1bn−1

I strategy
I fix the number of threads per block (256)
I fix the number of blocks: 120

I unless N is small — then the number of blocks is dN/256e
I cyclic distribution of array of length N
I each thread computes its partial sum

I threads within a block perform a reduction to get sum for that block
I each block writes back its block sum to global memory
I when kernel returns, CPU finishes up the work by adding up the 120 block sums

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 9

Example: dot product

I based on example from CUDA by Example, Chapter 5

I two vectors a and b of floats of length N

I compute the dot product of a and b:
I a0b0 + a1b1 + · · ·+ an−1bn−1

I strategy
I fix the number of threads per block (256)
I fix the number of blocks: 120

I unless N is small — then the number of blocks is dN/256e
I cyclic distribution of array of length N
I each thread computes its partial sum
I threads within a block perform a reduction to get sum for that block

I each block writes back its block sum to global memory
I when kernel returns, CPU finishes up the work by adding up the 120 block sums

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 9

Example: dot product

I based on example from CUDA by Example, Chapter 5

I two vectors a and b of floats of length N

I compute the dot product of a and b:
I a0b0 + a1b1 + · · ·+ an−1bn−1

I strategy
I fix the number of threads per block (256)
I fix the number of blocks: 120

I unless N is small — then the number of blocks is dN/256e
I cyclic distribution of array of length N
I each thread computes its partial sum
I threads within a block perform a reduction to get sum for that block
I each block writes back its block sum to global memory

I when kernel returns, CPU finishes up the work by adding up the 120 block sums

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 9

Example: dot product

I based on example from CUDA by Example, Chapter 5

I two vectors a and b of floats of length N

I compute the dot product of a and b:
I a0b0 + a1b1 + · · ·+ an−1bn−1

I strategy
I fix the number of threads per block (256)
I fix the number of blocks: 120

I unless N is small — then the number of blocks is dN/256e
I cyclic distribution of array of length N
I each thread computes its partial sum
I threads within a block perform a reduction to get sum for that block
I each block writes back its block sum to global memory
I when kernel returns, CPU finishes up the work by adding up the 120 block sums

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 9

dot.cu: kernel, part 1: local sums

/* Does most of the work in computing the dot product of a and b.

a and b are arrays of length N.

c is an array of length nblocks.

Upon return c[i] will hold the portion of the dot product corresponding

to the indexes for which block i is responsible.

The final dot product is the sum over all blocks i of c[i].

*/

__global__ void dot(float * a, float * b, float * c) {

__shared__ float sums[threadsPerBlock];

const int ltid = threadIdx.x; // local thread ID (within this block)

const int gtid = ltid + blockIdx.x * blockDim.x; // global thread ID

const int nthreads = gridDim.x * blockDim.x;

float thread_sum = 0;

for (int i = gtid; i < N; i += nthreads) thread_sum += a[i] * b[i];

sums[ltid] = thread_sum;

__syncthreads(); // barrier for the threads in this block

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 10

dot.cu: kernel, part 2: reduction

// reduction over the block. threadsPerBlock must be a power of 2...

for (int i = blockDim.x/2; i > 0; i /= 2) {

if (ltid < i) sums[ltid] += sums[ltid + i];

__syncthreads();

}

// at this point, sums[0] holds the sum over all threads.

if (ltid == 0) c[blockIdx.x] = sums[0];

}

I butterfly reduction!
I similar to butterfly barrier

I threadPerBlock=256, so log2(256) = 8
iterations

I at end, one thread (0) writes to global
memory

0 1 2 3 4 5 6 7
i = 4

i = 2

i = 1

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 11

dot.cu: host code, part 1

#define MIN(a,b) ((a)<(b)?(a):(b))

#define sum_squares(x) (x*(x+1)*(2*x+1)/6)

const int N = 1u<<30;

const int threadsPerBlock = 256;

// use at most 120 blocks. k40c has 15 SMPs, so that’s 8 blocks per

// SMP. For small values of N, we will use less than 120

// blocks...just enough to have one index per thread...

const int nblocks = MIN(120, (N + threadsPerBlock - 1) / threadsPerBlock);

int main() {

float * a, * b, * partial_sums, * dev_a, * dev_b, * dev_partial_sums;

int err;

double start_time = mytime();

printf("dot: N = %d, threadsPerBlock = %d, nblocks = %d, nthreads = %d\n",

N, threadsPerBlock, nblocks, threadsPerBlock*nblocks);

a = (float*)malloc(N*sizeof(float)); assert(a);

b = (float*)malloc(N*sizeof(float)); assert(b);

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 12

dot.cu: host code, part 2

partial_sums = (float*)malloc(nblocks*sizeof(float));

err = cudaMalloc((void**)&dev_a, N*sizeof(float)); assert(err == cudaSuccess);

err = cudaMalloc((void**)&dev_b, N*sizeof(float)); assert(err == cudaSuccess);

err = cudaMalloc((void**)&dev_partial_sums, nblocks*sizeof(float));

for (int i = 0; i < N; i++) {

a[i] = i;

b[i] = i*2;

}

err = cudaMemcpy(dev_a, a, N*sizeof(float), cudaMemcpyHostToDevice);

assert(err == cudaSuccess);

err = cudaMemcpy(dev_b, b, N*sizeof(float), cudaMemcpyHostToDevice);

assert(err == cudaSuccess);

dot<<<nblocks, threadsPerBlock>>>(dev_a, dev_b, dev_partial_sums);

err = cudaMemcpy(partial_sums, dev_partial_sums, nblocks*sizeof(float),

cudaMemcpyDeviceToHost);

assert(err == cudaSuccess);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_partial_sums);

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 13

dot.cu: host code, part 3

float result = 0.0f;

float expected = 2 * sum_squares((float)(N - 1));

for (int i = 0; i < nblocks; i++) result += partial_sums[i];

printf("Result = %.12g. Expected = %.12g. Time = %lf\n",

result, expected, mytime() - start_time);

fflush(stdout);

assert(result/expected <= 1.0001);

assert(expected/result <= 1.0001);

free(a);

free(b);

free(partial_sums);

}

S.F. Siegel � CISC 372: Parallel Computing � CUDA 2 14

