
CISC 372: Parallel Computing
CUDA, part 4

Stephen F. Siegel

Department of Computer and Information Sciences
University of Delaware

Matrix multiplication

[
a00 a01 a02
a10 a11 a12

]
×

b00 b01 b02
b10 b11 b12
b20 b21 b22

 =

[
a00b00 + a01b10 + a02b20 a00b01 + a01b11 + a02b21 a00b02 + a01b12 + a02b22
a10b00 + a11b10 + a12b20 a10b01 + a11b11 + a12b21 a10b02 + a11b12 + a12b22

]

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 2

Matrix multiplication: sequential CPU code

See seq/matmul.c.

I a: n× l

I b: l ×m

I c: n×m

I cij =
l−1∑
k=0

aikbkj

for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++)

c[i][j] = 0.0;

for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {

for (int k = 0; k < l; k++)

c[i][j] += a[i][k]*b[k][j];

}

}

Time for n = l = m = 8000: > 1 hour
(512 billion multiplications)

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 3

CUDA: simple matrix multiplication [CUDA Programming Guide 3.2.3]

I A: n× l

I B: l ×m

I C: n×m

I each thread computes at most one
element of c

I cij =

l−1∑
k=0

aikbkj

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 4

Simple matrix multiplication: matmul1.cu: kernel

/* Kernel. Multiplies a and b, sticking results into c.

a is nxl, b is lxm, c is nxm. */

__global__ void multiply(int n, int l, int m,

double * a, double * b, double * c) {

int i = blockDim.y * blockIdx.y + threadIdx.y;

int j = blockDim.x * blockIdx.x + threadIdx.x;

if (i < n && j < m) {

double result = 0.0;

for (int k = 0; k < l; k++)

result += a[i*l + k] * b[k*m + j]; // a[i][k] * b[k][j];

c[i*m + j] = result; // c[i][j]

}

}

I on Beowulf (K40c): Time for n = l = m = 8000: 13.8s.

I can we do better?

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 5

Simple matrix multiplication: matmul1.cu: kernel

/* Kernel. Multiplies a and b, sticking results into c.

a is nxl, b is lxm, c is nxm. */

__global__ void multiply(int n, int l, int m,

double * a, double * b, double * c) {

int i = blockDim.y * blockIdx.y + threadIdx.y;

int j = blockDim.x * blockIdx.x + threadIdx.x;

if (i < n && j < m) {

double result = 0.0;

for (int k = 0; k < l; k++)

result += a[i*l + k] * b[k*m + j]; // a[i][k] * b[k][j];

c[i*m + j] = result; // c[i][j]

}

}

I on Beowulf (K40c): Time for n = l = m = 8000: 13.8s.

I can we do better?

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 5

Simple matrix multiplication: matmul1.cu: kernel

/* Kernel. Multiplies a and b, sticking results into c.

a is nxl, b is lxm, c is nxm. */

__global__ void multiply(int n, int l, int m,

double * a, double * b, double * c) {

int i = blockDim.y * blockIdx.y + threadIdx.y;

int j = blockDim.x * blockIdx.x + threadIdx.x;

if (i < n && j < m) {

double result = 0.0;

for (int k = 0; k < l; k++)

result += a[i*l + k] * b[k*m + j]; // a[i][k] * b[k][j];

c[i*m + j] = result; // c[i][j]

}

}

I on Beowulf (K40c): Time for n = l = m = 8000: 13.8s.

I can we do better?

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 5

matmul1.cu: memory analysis

Questions?

I how many times is each element of a read from global memory?

I how many times is each element of b read from global memory?

Answers.

I element aik is used in the computation of every element of row i of c: ci,0..m−1

I hence aik is read m times

I element bkj is used in the computation of every element of column j of c: c0..n−1,j

I hence bkj is read n times

I reading from global memory is slow!

I can we use shared memory?

I note: you will never be able to fit the whole matrices into shared memory at once!

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 6

matmul1.cu: memory analysis

Questions?

I how many times is each element of a read from global memory?

I how many times is each element of b read from global memory?

Answers.

I element aik is used in the computation of every element of row i of c: ci,0..m−1

I hence aik is read m times

I element bkj is used in the computation of every element of column j of c: c0..n−1,j

I hence bkj is read n times

I reading from global memory is slow!

I can we use shared memory?

I note: you will never be able to fit the whole matrices into shared memory at once!

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 6

matmul1.cu: memory analysis

Questions?

I how many times is each element of a read from global memory?

I how many times is each element of b read from global memory?

Answers.

I element aik is used in the computation of every element of row i of c: ci,0..m−1

I hence aik is read m times

I element bkj is used in the computation of every element of column j of c: c0..n−1,j

I hence bkj is read n times

I reading from global memory is slow!

I can we use shared memory?

I note: you will never be able to fit the whole matrices into shared memory at once!

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 6

matmul1.cu: memory analysis

Questions?

I how many times is each element of a read from global memory?

I how many times is each element of b read from global memory?

Answers.

I element aik is used in the computation of every element of row i of c: ci,0..m−1

I hence aik is read m times

I element bkj is used in the computation of every element of column j of c: c0..n−1,j

I hence bkj is read n times

I reading from global memory is slow!

I can we use shared memory?

I note: you will never be able to fit the whole matrices into shared memory at once!

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 6

matmul1.cu: memory analysis

Questions?

I how many times is each element of a read from global memory?

I how many times is each element of b read from global memory?

Answers.

I element aik is used in the computation of every element of row i of c: ci,0..m−1

I hence aik is read m times

I element bkj is used in the computation of every element of column j of c: c0..n−1,j

I hence bkj is read n times

I reading from global memory is slow!

I can we use shared memory?

I note: you will never be able to fit the whole matrices into shared memory at once!

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 6

matmul1.cu: memory analysis

Questions?

I how many times is each element of a read from global memory?

I how many times is each element of b read from global memory?

Answers.

I element aik is used in the computation of every element of row i of c: ci,0..m−1

I hence aik is read m times

I element bkj is used in the computation of every element of column j of c: c0..n−1,j

I hence bkj is read n times

I reading from global memory is slow!

I can we use shared memory?

I note: you will never be able to fit the whole matrices into shared memory at once!

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 6

matmul1.cu: memory analysis

Questions?

I how many times is each element of a read from global memory?

I how many times is each element of b read from global memory?

Answers.

I element aik is used in the computation of every element of row i of c: ci,0..m−1

I hence aik is read m times

I element bkj is used in the computation of every element of column j of c: c0..n−1,j

I hence bkj is read n times

I reading from global memory is slow!

I can we use shared memory?

I note: you will never be able to fit the whole matrices into shared memory at once!

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 6

Matrix multiplication: using shared memory

I C is divided into square blocks
I each CUDA block computes one block

of C
I this computation requires one row of

blocks from A
I and one column of blocks from B

I for s = 0, 1, . . .
I load block s of A’s row of blocks

into shared memory
I load block s of B’s column of blocks

into shared memory
I multiply to get partial result
I accumulate sum of partial results

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 7

Using shared memory: matmul2.cu: kernel, part 1: load

__global__ void multiply(int n, int l, int m,

double * a, double * b, double * c) {

int i_local = threadIdx.y, j_local = threadIdx.x;

int i = blockDim.y * blockIdx.y + i_local; // row of c

int j = blockDim.x * blockIdx.x + j_local; // col of c

double result = 0.0;

for (int s = 0; s < l; s += BLOCK_SIZE) {

__shared__ double a_s[BLOCK_SIZE][BLOCK_SIZE];

__shared__ double b_s[BLOCK_SIZE][BLOCK_SIZE];

// each thread loads its one element of a: a[i][s+j_local]

if (i < n && s + j_local < l)

a_s[i_local][j_local] = a[i*l + s + j_local];

// each thread loads its one element of b: b[s+i_local][j]

if (s + i_local < l && j < m)

b_s[i_local][j_local] = b[(s + i_local)*m + j];

__syncthreads();

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 8

Using shared memory: matmul2.cu: kernel, part 2: multiply and store

// need s + k < l, i.e., k < l - s

const int k_stop = MIN(BLOCK_SIZE, l - s);

for (int k = 0; k < k_stop; k++)

if (i < n && j < m)

result += a_s[i_local][k] * b_s[k][j_local];

__syncthreads();

}

if (i < n && j < m)

c[i*m + j] = result; // c[i][j]

}

I on Beowulf (K40c): Time for n = l = m = 8000: 4.8s.

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 9

Using shared memory: matmul2.cu: kernel, part 2: multiply and store

// need s + k < l, i.e., k < l - s

const int k_stop = MIN(BLOCK_SIZE, l - s);

for (int k = 0; k < k_stop; k++)

if (i < n && j < m)

result += a_s[i_local][k] * b_s[k][j_local];

__syncthreads();

}

if (i < n && j < m)

c[i*m + j] = result; // c[i][j]

}

I on Beowulf (K40c): Time for n = l = m = 8000: 4.8s.

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 9

CUDA: additional concepts

I CUDA events provide a practical way to time things all withing CUDA
I multiple devices

I cudaGetDeviceCount(int *count)
I cudaSetDevice(int device)
I launch a kernel on one device
I change the device (set device to something else)
I launch another kernel, repeat

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 10

Hybrid all the way: MPI+OpenMP+CUDA

To take advantage of all hardware in a modern supercomputer. . .

I use MPI for interprocess communication

I use OpenMP or other threading model for intraprocess (shared memory) concurrency on
the CPU

I use CUDA to offload certain computations onto GPGPUs

. . . all in one program!

I you know how to do each of these separately,

I here is simple “hello world” example as a template for combining all three forms

I hybrid.cu

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 11

Hybrid all the way: MPI+OpenMP+CUDA

To take advantage of all hardware in a modern supercomputer. . .

I use MPI for interprocess communication

I use OpenMP or other threading model for intraprocess (shared memory) concurrency on
the CPU

I use CUDA to offload certain computations onto GPGPUs

. . . all in one program!

I you know how to do each of these separately,

I here is simple “hello world” example as a template for combining all three forms

I hybrid.cu

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 11

hybrid.cu: MPI+OpenMP+CUDA, part 1: kernel

#include <stdio.h>

#include <mpi.h>

#include <omp.h>

#include <assert.h>

__global__ void kernel(int rank) {

int bid = blockIdx.x;

int tid = threadIdx.x;

printf("Hello from block %d, thread %d of the GPU, called by process %d\n",

bid, tid, rank);

}

I each MPI process will invoke the kernel

I the process will pass its rank (ID) as an argument

I this would be appropriate, for example, with one MPI process and one GPU card per node

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 12

hybrid.cu: MPI+OpenMP+CUDA, part 2: host code

int main (void) {

int rank, nprocs, required = MPI_THREAD_FUNNELED, provided;

MPI_Init_thread(&argc, &argv, required, &provided);

assert(provided == MPI_THREAD_FUNNELED);

MPI_Barrier(MPI_COMM_WORLD);

double start = MPI_Wtime();

MPI_Comm_size(MPI_COMM_WORLD, &nprocs); MPI_Comm_rank(MPI_COMM_WORLD, &rank);

kernel<<<3,4>>>(rank); // 3 blocks, 4 threads per block

#pragma omp parallel shared(rank,nprocs)

{

int tid = omp_get_thread_num(), nthreads = omp_get_num_threads();

printf("Greetings from CPU thread %d/%d of process %d/%d!\n",

tid, nthreads, rank, nprocs);

}

cudaDeviceSynchronize();

MPI_Barrier(MPI_COMM_WORLD);

if (rank == 0) printf("Time: %f\n", MPI_Wtime() - start);

MPI_Finalize();

}

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 13

Makefile

NAME = hybrid

ROOT = ../../..

include $(ROOT)/common.mk

NPROCS = 2

NCORES = 4

all: $(NAME).exec

test: $(NAME).exec

$(MPIRUN) -n $(NPROCS) -c $(NCORES) --gres=gpu:1 ./$<

$(NAME).exec: $(NAME).cu Makefile

nvcc --compiler-options -fopenmp -o $@ --compiler-bindir mpic++ $<

.PHONY: all test

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 14

Run on Beowulf

siegel@grendel:~/372/code/src/cuda/hybrid$ make test

nvcc --compiler-options -fopenmp -o hybrid.exec --compiler-bindir mpic++ hybrid.cu

srun --unbuffered -n 2 -c 4 --gres=gpu:1 ./hybrid.exec

Greetings from CPU thread 0/4 of process 0/2!

Greetings from CPU thread 3/4 of process 0/2!

Greetings from CPU thread 2/4 of process 0/2!

Greetings from CPU thread 1/4 of process 0/2!

Hello from block 0, thread 0 of the GPU, called by process 0

Hello from block 0, thread 1 of the GPU, called by process 0

...

Hello from block 1, thread 3 of the GPU, called by process 0

Greetings from CPU thread 0/4 of process 1/2!

Greetings from CPU thread 2/4 of process 1/2!

Greetings from CPU thread 1/4 of process 1/2!

Greetings from CPU thread 3/4 of process 1/2!

Hello from block 0, thread 0 of the GPU, called by process 1

Hello from block 0, thread 1 of the GPU, called by process 1

...

Hello from block 1, thread 3 of the GPU, called by process 1

Time: 0.530748

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 15

Bridges SLURM script: hybrid_p100.sh

#!/bin/bash

A P100 node on the GPU-small partition has: 2 GPUs, 2 16-core CPUs,

8 TB on-node storage. In this configuration, 1 node is requested.

Two MPI processes will run, each will get 16 OpenMP threads.

#SBATCH -p GPU-small

#SBATCH -t 00:01:00

#SBATCH -N 1

#SBATCH --ntasks 2

#SBATCH --gres=gpu:p100:1

echo commands to stdout

set -x

mpirun -np $SLURM_NTASKS ./hybrid.exec

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 16

Bridges hybrid output

+ mpirun -np 2 ./hybrid.exec

Greetings from CPU thread 6/16 of process 1/2!

Greetings from CPU thread 1/16 of process 1/2!

...

Greetings from CPU thread 2/16 of process 1/2!

Greetings from CPU thread 1/16 of process 0/2!

Greetings from CPU thread 2/16 of process 0/2!

...

Greetings from CPU thread 3/16 of process 0/2!

Hello from block 0, thread 0 of the GPU, called by process 0

Hello from block 0, thread 1 of the GPU, called by process 0

...

Hello from block 2, thread 3 of the GPU, called by process 0

Time: 0.220297

Hello from block 0, thread 0 of the GPU, called by process 1

Hello from block 0, thread 1 of the GPU, called by process 1

...

Hello from block 1, thread 3 of the GPU, called by process 1

S.F. Siegel � CISC 372: Parallel Computing � CUDA 4 17

